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Executive Summary 
The Advanced Metering Infrastructure Customer Segmentation (AMICS) modeling 
approach has been extensively tested on residential HVAC programs in Phase I of the AMI 
Billing Regression study. This Phase II study has expanded this research to include a 
variety of commercial HVAC programs and the Gamma Wave of PG&E’s residential 
Home Energy Reports program. 

A key benefit of the AMICS model is avoiding over-reliance on ‘average day’ conditions. 
Most models essentially estimate the average load shape and then make a series of 
adjustments to that prediction depending on how the actual weather conditions differ 
from this average. The AMICS approach uses segmentation to produce a portfolio of load 
shapes and then compares each day in the post-period against similar days in the pre-
period, as shown in Figure 1. When applied to an entire program, the AMICS model 
provides separate savings estimates for each customer segment, which makes it a useful 
tool for targeting. Most other models provide one annualized kWh savings number. 
AMICS parses out the savings into individual hours and days by customer segment to 
pinpoint the conditions that produce savings. 

Figure 1: AMICS Approach 

 

Table 1 provides a summary of the results from this Phase II research. We looked at two 
residential HVAC programs (the SCE Quality Installation and PG&E Quality Maintenance 
programs), the Gamma Wave of the PG&E Home Energy Reports program, four 
commercial HVAC programs offered by PG&E and SCE, and one commercial HVAC field 
data collection study. The holdout tests for each of these programs demonstrated that the 
AMICS model is able to produce reasonable load shape estimates, with prediction errors 
of less than 1 percent relative to the actual hourly energy usage of customers in the 
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holdout samples. The AMICS model detected statistically significant savings for the SCE 
Quality Installation and PG&E Air Care Plus programs that were consistent with our 
expectations by season and time-of-day for improved air conditioning efficiency. While 
the AMICS model was not able to detect statistically significant savings at the program 
level for the remaining programs, our analysis by customer segment enabled us to identify 
a season and/or subset of customers (by baseline usage segment or industry) with savings.  

Table 1: Summary of AMICS Results from Phase II 
Program 
Type IOU Program Name 

Holdout 
Error 

Estimated 
Savings* 

Savings 
Broken Out By  

Residential 
HVAC 

SCE Quality Installation (QI) -0.3% 6.0 ± 2.8% Season,  
usage bin 

PG&E Quality Maintenance (QM) <0.1% 0.9 ± 1.8% Season, usage & 
load shape bin 

Home Energy 
Reports PG&E Home Energy Reports 

(Gamma Wave) 
-0.1% control 

-0.4% treat 
0.6 ± 1.0% Season,  

load shape bin 

Commercial 
HVAC 

PG&E 
Air Care Plus 

-0.9% 
3.9 ± 1.4% Season, industry 

Quality Maintenance (CQM) 0.2 ± 2.2% Season, industry 

SCE 
Quality Maintenance (CQM) 1.0% 0.4 ± 1.5% Season, industry 

Quality Installation (CQI) 0.3% -0.5 ± 1.9% Industry 

SCE Field Data Collection Study n/a n/a n/a 

* Percentages represent kWh savings as a proportion of baseline kWh consumption. 
 
Key findings:  

• The AMICS model is able produce accurate load shape predictions for residential 
HVAC participants, households in the HERs treatment and control groups, and 
participants in each of the commercial HVAC programs. 

• The estimated savings for the residential SCE QI program were consistent with our 
expectations by season and time-of-day for improved air conditioning efficiency. 

• The AMICS segmentation of the residential PG&E QM program revealed that 
participants who were high energy users in the baseline period realized substantial 
energy savings from the program intervention.  

• We found evidence of energy savings realized by the HERs treatment group above 
and beyond the natural changes observed in the control group, but these savings 
were not statistically significant at the program level. 

• All of the commercial HVAC programs could benefit from improved targeting by 
business type.   
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1 Introduction 
As electric utilities transition to advanced metering infrastructure (AMI), a greater amount 
and richer source of consumption data is becoming available to evaluators. A single 
customer’s metered data at one-hour intervals translate to over 700 data points per month, 
providing an opportunity for evaluators to better understand the impacts that energy 
efficiency programs (and other factors) have on energy consumption during specific hours 
of the day, rather than a daily average derived from monthly data. A common concern 
among economists and other analysts working with monthly consumption data is that the 
aggregation conceals more than it reveals. The availability of short-interval meter data 
allows for potentially more accurate and robust models. 

One of the key areas where AMI data have the potential to improve accuracy is in billing 
regression models used to estimate program savings—both for energy and demand 
impacts. Most of the literature to date has focused on using monthly consumption data, as 
these are typically all that have been available for estimating impacts at the program level. 
Other studies (particularly those regarding demand response programs) have utilized 
AMI data to estimate load shapes and demand impacts (Nexant's load impact evaluation 
for PG&E's SmartAC Program,1 for example), but these models typically have been 
developed manually for each specific situation and therefore have not been practical for 
addressing a large number of customer types and time periods. Other works such as Hsiao 
et al.2 provided an early application of the random coefficients model to energy efficiency, 
while Granderson et al.3 have begun to look at developing AMI regression models in a 
more systematic fashion. None of these past studies, however, have presented a method 
for efficiently developing a large number of models that are tailored to a wide range of 
customer types and time periods that take full advantage of the information contained in 
the AMI data. 

To explore how AMI data could be used in billing regression models, the California 
investor-owned utilities (IOUs) contracted with Evergreen Economics to conduct 
exploratory research using participant data from several residential HVAC programs. 

 

1 Nexant. 2014. 2013 Load Impact Evaluation for Pacific Gas and Electric Company’s SmartAC Program. Prepared 
for Pacific Gas and Electric.  
2 Hsiao, C., D. Mountain, M.W. Chan, K.Y. Tsui. 1989. “Modeling Ontario Regional Electricity System 
Demand Using a Mixed Fixed and Random Coefficients Approach.” In Regional Science and Urban Economics 
Volume 19, Issue 4: 565-587.  
3  See for example: Granderson, J, PN Price, D. Jump, N. Addy, and M. Sohn. 2015. "Automated 
Measurement and Verification: Performance of Public Domain Whole-Building Electric Baseline Models." 
Applied Energy 144: 106-113. See also: Granderson, J., S. Touzani, C. Custodio, S. Fernandes, M. Sohn, and D. 
Jump. 2015. Assessment of Automated Measurement and Verification (M&V) Methods. Lawrence Berkeley 
National Laboratory, LBNL#-187225.  
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Phase I of this research was completed in 2016 and culminated in the development of a 
billing regression model that takes full advantage of AMI data granularity. This model is 
called the AMI Customer Segmentation (AMICS) model and proved to be very effective 
when tested using residential customer data.4 

Phase I used two relatively small residential HVAC programs as testing grounds: Pacific 
Gas and Electric’s residential Quality Maintenance (QM) program and Southern California 
Edison’s residential Quality Installation (QI) program. This research demonstrated that the 
AMICS modeling approach produces similar results to a traditional fixed effects model at 
the program level, while providing valuable insights into the characteristics of customers 
and weather conditions that drive savings.5  

To follow up on the promising results from the Phase I research, the IOUs contracted with 
Evergreen Economics in 2016 for Phase II of this study so that the AMICS model could be 
tested using a wider range of programs and customer types. The overarching goal of the 
Phase II research was to conduct a much more detailed investigation of the AMICS model 
and determine how well the modeling framework performed in a wider range of program 
applications. With this overarching goal in mind, the specific study objectives were to: 

1. Refine the residential billing analysis methods using data from the same HVAC 
programs examined in Phase I; 

2. Explore using the AMICS model to estimate savings for the Home Energy Reports 
(HERs) program; 

3. Assess the AMICS model performance in evaluating commercial HVAC programs; 
and 

4. Evaluate the AMICS model’s potential capabilities for analyzing High Opportunity 
Programs and Projects, in regards to implementation of Assembly Bill (AB) 802.6 

The steps for developing the AMICS model for each program are discussed in detail in the 
following section, but the basic steps are as follows: 

1. Assign customers and weather conditions into distinct segments; 

 

4 In Phase I, this approach was referred to as the Random Coefficients Model (RCM), named for the specific 
type of regression. We have since re-branded the model to emphasize segmentation, the step that is unique 
to this approach.  
5 Evergreen Economics. 2016. AMI Billing Regression Study Final Report. Prepared for Southern California 
Edison. http://www.calmac.org/publications/AMI_Report_Volume_1_FINAL.pdf 
6 AB 802 directed the California Energy Commission to consider the overall reduction in normalized 
metered energy consumption (NMEC) in existing buildings as a measurement of energy savings.  
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2. Estimate average daily load shapes for each customer segment; 
3. Use the load shape estimates from Step 2 to predict actual usage for a holdout 

sample of customers; 
4. Calculate the prediction error and assess whether it meets the accuracy criteria 

established for the model; and 
5. If the prediction error fails the accuracy test, repeat Steps 1 through 4 with different 

customer segments until the accuracy thresholds are met. 

Throughout this report, we refer to differences in actual and predicted load shapes as 
“savings” that can be attributed to the program. For most of the programs examined in 
this study, however, there is no nonparticipant comparison or control group to include in 
the model that would help control for exogenous effects that might be impacting energy 
consumption. Consequently, the differences between actual and predicted energy use may 
be reflecting broader changes in the economy and not the result of any program actions. 
The results presented here should be interpreted with that caveat in mind. The exception 
to this is the HER program, where there is a nonparticipant control group available for our 
analysis.   

The remainder of this report describes the AMICS modeling process in more detail, 
followed by different applications of the AMICS model to the different programs 
identified for this research. Table 2 summarizes the programs and available data for each 
program type.  
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Table 2: Data Sources Available for the AMICS Phase II Analysis 

Program Type IOU Program Name 

Number of 
Distinct 

Customers 

Residential HVAC 
PG&E Quality Maintenance (QM) 31,615 

SCE Quality Installation (QI) 2,119 

Home Energy Reports PG&E Home Energy Reports (Gamma Wave) 152,292 

Commercial HVAC 

PG&E 
Air Care Plus 

1,503 
Quality Maintenance (CQM) 

SCE 

Early Retirement 

5,059 

Quality Installation (CQI) 

Quality Maintenance (CQM) 

Quality Renovation (CQR) 

Upstream HVAC 

Field Data Collection Study 7 

NOTE: This table provides the number of distinct customers with participation dates listed in the IOU program 
documentation. Some of these customers participated in multiple programs.  
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2 Methods 

2.1 The AMICS Model 
This section presents a general overview of the Advanced Metering Infrastructure 
Customer Segmentation (AMICS) modeling approach. Evergreen’s previous research for 
SCE and PG&E has demonstrated that the AMICS model produces similar results to a 
traditional fixed effects billing regression at the program level. The real advantage of the 
AMICS model, however, is that the model provides very detailed and granular results that 
provide valuable insights into the characteristics of customers and weather conditions that 
drive savings. The AMICS model also provides detailed estimates of the time of day that 
the savings occurred.7 

The AMICS approach produces a portfolio of daily energy use load shapes, representing 
how each customer uses energy across a wide range of different weather conditions. A 
unique step in the AMICS modeling approach is segmenting the AMI data into thousands 
of distinct segments (bins), as shown in Figure 2. Each bin contains interval energy use 
data for customers with similar energy usage patterns on days with specific weather 
conditions. Binning the data and then estimating separate regression models for each bin 
enables the overall model to control for a greater amount of the variation across both 
customers and weather conditions. This is not a proprietary “black box” method, but 
rather a series of simple linear regressions that are estimated with open source statistical 
software (R and PostgreSQL). Ultimately, the segmentation process reduces the prediction 
error for the load shape estimates, improving the predictive power of our models. AMICS 
could easily be adapted to evaluate gas programs, providing the benefits of predictive 
power and energy savings by customer segment and day.  

 

7 The AMICS approach has been extensively tested and shown to accurately estimate energy savings for 
residential and commercial customers participating in HVAC programs, multifamily whole building retrofit 
programs, and home energy reports programs (both recipients and controls). In each study, repeated 
holdout testing was conducted to demonstrate the model’s ability to make reasonable and consistent load 
shape predictions across the diverse sample of customers and days. 
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Figure 2: AMICS Approach 

 

2.1.1 Segmentation 
Much of the AMICS modeling process is devoted to categorizing customers based on the 
pre-period billing data (top half of Figure 2). The process used to develop the optimal 
customer segmentation scheme is described in more detail below.  

Customer Segmentation 
Similar customers are modeled together, increasing the number of observations within 
each bin. The additional observations improve the model’s ability to separate out signals 
in energy usage from simple random noise. After modeling, the segments also provide 
insights into the characteristics of customers who are realizing the greatest energy savings 
from the program. In this way, customer segmentation can be an effective and meaningful 
process for evaluations focused on total program savings. 

For this study, we explored a variety of customer segmentation techniques, including: 

1. Baseline energy usage – via fixed effects model 
2. Daily energy usage 
3. Load shape  – via k-means clustering 
4. Climate zone 
5. Business type (e.g., retail, warehouse) 
6. Building type 
7. Individual 

In most instances, a combination of two or three of these segmentation criteria are 
combined to create a series of small, more homogenous customer segments. 
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Baseline energy usage. One option for customer segmentation is to use a fixed effects 
regression model to estimate daily baseline electricity use for each home, while controlling 
for outside air temperature, as shown in Equation 1.8 A characteristic of the fixed effects 
model is the estimation of a separate specific constant term (αi) for each customer. This 
constant varies by customer site and accounts for time-invariant effects on consumption. 
In the model specification, the constant can be interpreted as site-specific baseline 
electricity consumption after controlling for variation in outside air temperature.  

Equation 1: Fixed Effects Model Specification 

 

Once the constant term is estimated, the customers are ranked in ascending order of 
baseline energy use and assigned to one of 10 bins based on each home’s weather 
normalized home usage in the pre-period. In this way, we group homes with similar 
energy consumption together. Each home group represents about 10 percent of total daily 
electricity (baseload) usage for the homes in our sample. Because of this, the number of 
homes in each bin varies, but the amount of daily kWh each bin represents is 
approximately the same.9  

Daily energy usage. A separate binning process is used to capture differences in average 
daily energy usage, without removing the weather-sensitive component. This is simpler 

 

8 Before defining the customer segments and estimating any regression models, we removed days with 
fewer than 24 observations (one per hour) from the database to ensure that inclusion of incomplete days did 
not bias our estimates of energy consumption. 
9 Sites that are vacant in the pre-period due to long vacations, tenant turnover in rental properties, or other 
reasons will naturally fall into the lowest baseline usage group. If the site is not vacant during the post-
period, the site’s total usage will increase greatly and may mask program savings. The opposite is expected 
to be true as well. This is not a limitation of the binning procedure, but is a limitation on any analysis 
conducted with these data. If we had access to more information about these buildings (e.g., occupancy, 
owned vs. rental property, vacation vs. permanent residence), we would incorporate these elements into the 
binning procedure to limit any bias they may have on the resulting program savings estimates. To limit this 
potential for bias, we removed sites with extremely low consumption on the average day during the pre-
period.	 

kWhi,t =αi +β1CDDt +β2HDDt +εi,t
Where :
kWhi,t =  daily electricity consumption of customer i on day t  

   of the pre-participation period
αi =  customer-specific fixed effect constant 

   (i.e., estimated baseline consumption for customer i)
CDD,HDD =  cooling and heating degree-days (base of 65°F)
β1,β2,... =  coefficients estimated in the regression model

ε  =  random error term, assumed to be normally distributed
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than the baseline approach, as it does not require any weather normalization. We assign 
customers to one of 10 bins by their average daily energy usage for the most recent full 
pre-period year, such that each bin represents 10 percent of the total kWh. The number of 
customers in each bin varies, with the highest energy usage bins containing the fewest 
customers. This binning strategy isolates customers who are atypical in terms of daily 
energy use, thereby reducing error in the model without removing these customers from 
the analysis. The last bin will include customers with the highest energy usage, such as 
those with regular use of an inefficient air conditioning system, large buildings, and/or 
high occupancy buildings.  

Load shape. The load shape bins are clusters of customers with similar hours of energy 
use. We used k-means clustering to identify the 10 unique clusters shown in Figure 3, each 
containing a subset of residential customers with similar load shapes during the pre-
period. Cluster analysis is a machine-learning algorithm designed to detect patterns in 
data.10 In the AMICS application, the cluster analysis allows for identifying customers 
with similar load shapes and then grouping them together in the binning process. The 
benefit of cluster analysis is that similar customers are grouped automatically from the 
AMI data rather than relying on customer characteristics that are not typically tracked (or 
not regularly updated) in utility databases. Customers with similar energy usage on the 
average day (daily usage bin) can have drastically different load shapes. These load shape 
clusters help account for the differences in occupant schedules, energy-intensive 
equipment, peak demand hours, and other factors.  

 

10 The k-means clustering algorithm randomly assigns each customer’s load shape to one of k clusters and 
then calculates the sum of the distance between each load shape and the centroid (i.e., average load) of the 
cluster to which it was assigned. Load shapes are then reassigned to the nearest cluster centroid, and the 
process is repeated until the variation within each cluster cannot be improved. 
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Figure 3: Load Shape Clusters 

 

Climate Zone. In programs where the participants cover a large geographic area, it can be 
beneficial to also segment by climate zone. The building climate zones defined by the 
California Energy Commission may help to control for differences in the typical climate 
(including temperature, humidity, and wind) as well as housing stock (e.g., building type, 
vintage, existing equipment).11 

Building Type. For residential customers, building type can identify customers living in 
multi-family units and mobile homes from single-family detached units. Home size, 
occupant tenure, and vintage all contribute to energy usage and differ by building type. 
This van be a valuable option for customer segmentation when combined with another 
factor, such as load shape. The main limitation with building type for the residential 
programs is the data availability and variation within the participant population.12  

 

11 A description of the CEC climate zones can be found at 
https://ww2.energy.ca.gov/maps/renewable/building_climate_zones.html 
12 Building type was not utilized for any of the three residential programs in Phase II due to data limitations. 
All of the SCE QI participants had a building type listed as single-family; the vast majority (97%) of PG&E 
QM participants were in detached units, with a very small sample of shared-wall units (3%) and a single 
mobile home; building type was undefined for nearly all (99.4%) of the PG&E HERs participants.  
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Business Type. For commercial customers, a separate binning option is based on business 
type. The California investor-owned utilities (IOUs) collect and store information about 
their commercial and industrial customers based on the North American Industry 
Classification System (NAICS), which describes the primary business activity at the 
physical location associated with the utility account.13 NAICS follows a hierarchical 
classification system, where the first two digits designate the sector, followed by digits 
designating the subsector, industry group, and then industry.14 We defined broad industry 
groups using the first one to three digits of each six-digit NAICS code, as shown in Table 
3. Businesses within each of these groups likely share some characteristics that are not 
directly represented in utility customer databases, such as operating schedules (e.g., 
seasonality in schools vs. retail) or primary end uses (e.g., lighting in retail vs. kitchen 
equipment in food service). 

 

13 We validated the NAICS codes of all SCE Commercial Quality Installation participants with manual 
lookups of each service address (i.e., distinct customer account and premise). While the NAICS provided by 
the utility were not flawless, there were some clear patterns in the types of businesses that were reclassified 
during this process. Of the 24 percent of valid NAICS codes that did not match on the first two digits, 52 
percent were listed in SCE’s data as lessors of real estate (531XXX). This was not surprising, as the utility 
classifications likely describe the property manager or lessor if they are responsible for paying the utility bill, 
rather than the business who occupies the building is actively using energy. Fortunately, the utility 
classification of lessors can still provide value in customer segmentation as it will isolate those business who 
are not responsible for their utility bill directly. As long as we segment businesses by a combination of 
NAICS and load shape, the differences in operating hours and major end uses will result in leased offices 
and leased retail spaces to be assigned to separate customer segments within the NAICS segment for lessors 
of real estate. 
14 The US Census Bureau's NAICS website can be found at https://www.census.gov/eos/www/naics/ 
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Table 3: Business Type by Industry Classification 

NAICS Code Description 

11**** Agriculture, forestry, fishing and hunting 

22**** Utilities 

23**** Construction 

3***** Manufacturing 

42**** Wholesale trade 

44****, 45**** Retail trade 

48****, 49**** Transportation and warehousing 

5***** Information, finance and insurance, real estate, management; 
professional, scientific, and technical services 

61**** Educational services 

62**** Health care and social assistance 

71**** Arts, entertainment, and recreation 

721*** Accommodation 

722*** Food services and drinking places 

811*** Repair and maintenance (e.g., auto, household goods) 

813*** Religious, civic, professional, and similar organizations 

92**** Public administration 

99 Undefined 

 

When NAICS codes were not well defined across participants in a given program, we 
relied instead on customer segment, building type, or business type classifications 
provided in the program tracking data and/or utility customer databases. 

Individual. Customer segment models can be sufficient to estimate savings in individuals 
when the segments are constructed from a relatively homogenous target population (e.g., 
multifamily tenants) and/or a large number of customers with a full year of pre-period 
energy usage data. For programs with a small number of diverse customers, it is not 
always possible to construct meaningful customer segments that will consistently meet the 
normalized metered energy consumption (NMEC) error thresholds for a baseline model. 
This is likely for programs offering custom efficiency measures to commercial customers 
that are unique with respect to their building characteristics, operating hours, and 
economic activity. In these cases, each customer is assigned to their own bin, effectively 
constructing separate models for each individual customer. In this variation of the AMICS 
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approach, we are no longer creating separate customer groups, but the segmentation of 
days (via weather conditions and day type) is still required.  

Day Segmentation 
In addition to the segmentation schemes described above based on customer 
characteristics, each day of the study period is also categorized in terms of its weather, day 
type, and season.  

The weather bins are created by calculating cooling degree-hours (CDH) for each hourly 
observation using a base temperature of 65 degrees Fahrenheit, and then taking the 
average of these hourly values to create a single cooling degree-day (CDD) value for each 
customer on each day (i.e., each “customer-day”) in the study period.15 These customer-
days are assigned to a series of bins, each containing a range of six CDDs. This process is 
repeated to assign these same days to heating degree-day (HDD) bins, each containing a 
range of six HDDs. Segmenting days by their CDD and HDD in this manner before the 
regression explicitly incorporates temperature into our model.  

To control for the differences in energy usage across days with the same weather 
conditions, we also binned by day type and season. Day type was typically defined by 
weekday versus weekend, with Saturday and Sunday assigned to day type 1.16 The four 
seasonal bins are defined as winter (December-February), spring (March-May), summer 
(June-August), and fall (September-November). 

Composite Bins 
Figure 4 provides an example of a single customer and day being binned. Each customer 
was assigned to just one customer bin, but because temperature and day type changes 
throughout the year, each customer has customer-days that were assigned to many 
different bins.  

 

15 A cooling degree-day (CDD) is a metric designed to measure the demand for energy required to maintain 
a comfortable temperature inside a building. It represents the number of degrees that the outdoor 
temperature exceeds an assumed baseline (in this case, 65°F), averaged across all hours in the day. By 
calculating this metric from hourly temperatures instead of daily averages, we can identify days that require 
some cooling during peak hours as well as heating in the early morning or evening.  
16 We explored variations in day type definitions, such as weekday versus weekend/holiday or seven 
distinct day-of-week bins. Unless these more granular day type bins resulted in significant reductions in 
model error, we opted for the simplicity of weekday versus weekend day types.  
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Figure 4: Customer-Day Segmentation Example 

 

There are no rules for how many bins are required for the AMICS modeling approach to 
be successful. In general, fewer bins will increase the number of customers within each 
bin; as you increase the sample size for a model, you would generally expect to see tighter 
error bounds around the model predictions. However, this desire for large sample size in 
each bin must be balanced with a need to isolate outliers. If outliers with extremely high or 
variable energy usage are retained in bins with customers who have more consistent 
patterns of usage, then the model predictions for this entire customer segment will be 
influenced by the outlier and the variability will be reflected with wider error bounds. If 
the segmentation strategy successfully identifies this outlier as unlike all other customers, 
they will be assigned to a solo bin. A key to the AMICS approach is conducting trials with 
different segmentation strategies to compare the relative prediction error with holdout 
tests, as described in Section 2.1.3.  

The customer-day segmentation process has the following benefits: 

• Variation in CDD is controlled for in the bins so it does not need to be included as a 
variable in the model specification; the same is true for all other binning factors.   

• Modeling customer-days allows us to exclude individual days with missing 
observations from the database. Rather than limiting the analysis to customers with 
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flawless data throughout the study period, we remove specific days with less than 
24 complete hours of billing and weather data.   

• Participants with no post-period observations are still useful when constructing 
models of the pre-period because they are simply a series of customer-days. These 
pre-period observations improve our ability to produce reasonable load shape 
predictions for other customers in the same segment that do have post-period 
observations. Later in the analysis, customers with no post-period observations are 
automatically excluded from the impact estimates.   

• When binning annual observations by customer segment, weather, and day type, 
only one model is required. The output is generated at the bin level, so the model 
allows creation of load shapes and savings estimates for each bin (e.g., customer 
segment 20 on summer weekdays with 9-11 CDDs), group (e.g., annual savings for 
the customer segment with the highest energy usage during the peak period), or at 
the program level (i.e., annual savings across all customer segments), without the 
need to estimate additional models.   

2.1.2 Regression Model 
Once the data are segmented, the AMICS model approach involves estimating an ordinary 
least squares (OLS) regression model for each customer-day bin (Equation 2) that contains 
a single dummy variable for each hour of the day.  

Equation 2: AMICS OLS Regression Model 

 

Unlike a traditional fixed effects regression model, which estimates a single set of slope 
coefficients for all customers and a constant term for each individual customer, the 
regression modeling approach employed by the AMICS model estimates a full unique set 
of slope coefficient estimates for each customer segment (i.e., climate zone and load shape 
cluster) for each day bin (weather and day type).  

kWhi,t = β0iH00i,t +β1iH01i,t +β2iH02i,t +...+β23iH23i,t +εi,t
Where :
kWhi,t =  Energy consumption, for customer in bin i during hour t

H00,H01,... =  Array of dummy variables (0,1) representing the hour of the day
β0i,β1i,... =  Coefficients estimated by the model, for customers in bin i

ε  =  Random error, assumed normally distributed 
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2.1.3 Validation: Holdout Tests 

Load Shape Predictions 
To validate the AMICS model’s ability to make accurate predictions, we conduct a holdout 
test (i.e., cross validation exercise) using only pre-period data. This involves randomly 
selecting 30 percent of the customers in our database as a holdout sample, defining the 
bins and estimating the model using the remaining 70 percent of the customers, and then 
using the model results to predict energy usage for the holdout sample. This is sometimes 
referred to as a cross-validation exercise. 

The results of one holdout test are shown in Figure 5, comparing the predicted pre-period 
load shape from the model (red line) to the actual pre-period load shape for the 
comparison group from the holdout sample (blue line). When the model is performing 
well, the two lines will overlap. The holdout test relies exclusively on pre-period data so 
that any differences between the predicted and actual energy usage can be attributed to 
model error, and not to program savings. In this case, the model predictions track almost 
perfectly with the actual energy usage of the comparison group, with a total difference of 
only 0.2 percent on an average day.   

Figure 5: Holdout Actual vs. Predicted Usage, Comparison Group in Pre-Period  

 

If the holdout test reveals customer or day bins with high prediction error, we can adjust 
the binning criteria (e.g., the number of load shape clusters) to refine the segmentation and 
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then repeat the holdout process to confirm improvement.17 The iteration process continues 
with small variations to the AMICS binning criteria until the model prediction error stops 
showing significant improvement. If multiple binning strategies result in similarly low 
prediction errors, the simplest model is selected for ease of interpretation. 

2.1.4 Predictions and Savings Estimation 
Once we are confident that our AMICS model is sufficiently able to predict the pre-period 
consumption for the customers in our holdout sample, we re-estimate the model using the 
full sample (no holdout) to take advantage of all available data. We then use the model to 
predict what the load shapes would have looked like (for each customer segment on each 
day) in the post-period if the program intervention had not occurred. Finally, we compare 
the predicted load shapes to actual energy consumption over the same period to 
determine the total change in energy usage from the pre- to post-period, while controlling 
for any differences in weather and day type.  

The AMICS model produces separate energy savings estimates for every day in the post-
period. These can be aggregated to whatever level is requested by the utility, such as a 
single average annual savings by hour or the average energy savings which occurred 
during the utility’s system peak demand (e.g., summer weekdays from 4-9pm). As long as 
interval data is available, peak demand savings can be estimated with the AMICS 
approach. However, our primary focus for this study was a demonstration of model fit, 
annualized hourly energy savings, and examples of patterns in energy savings by 
customer segment.  

Computing Standard Errors 
In the AMICS approach, we estimate individual regression models for thousands of 
customer-day segments, providing a kWh energy usage prediction for each hour.  

Because the AMICS model is estimated using the pre-period data, we compute the relative 
variance for each hour of the day for each customer-day bin as the ratio of the variance to 
predicted hourly kWh usage. These relative variances are then applied to the post-period 
data to create confidence intervals for the model predictions of each hour of each 
customer-day in the post-period. With 24 hours per day and thousands of customer-day 
segments, we compute over 24,000 confidence intervals. For aggregated predictions, such 
as the annual and seasonal post-period load shapes, we use bootstrapping to estimate the 

 

17 We consider a segmentation approach successful if the resulting AMICS model is able to separate patterns 
in energy usage from the simple random noise of individual observations, as measured by our holdout 
validation tests. This must be balanced with a need for easy interpretation, as the model results by customer 
segment will be used to provide insights into the characteristics of customers that were able to achieve the 
greatest energy savings.  
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relative variance for each hour, accounting for variation in the number of observations and 
relative kWh represented by each customer-day bin.  

Any bias in the AMICS model predictions detected in the holdout validation test will be 
reflected in the error bounds on the predictions of post-period energy use and the 
corresponding savings estimates. 

2.2 Database Creation 

2.2.1 IOU Programs 
The primary focus of this study was to test the capability of the AMICS approach across a 
wider range of customer types and efficiency programs than Phase I. To accomplish this, 
Evergreen received a sample of nearly 200,000 utility customers that participated in one or 
more IOU programs in recent years. Table 4 summarizes customer data available for this 
analysis.		

Table 4: IOU Program Participant Data Sources 

Program Type IOU Program Name 

Number of 
Distinct 

Customers 
Participation 

Dates 

Residential HVAC 
PG&E Quality Maintenance (QM) 31,615 

Jan 2015 to  
Jul 2016 

SCE Quality Installation (QI) 2,119 Dec 2013 to  
May 2016 

Home Energy Reports PG&E Gamma Wave 152,292 Nov 2011 

Commercial HVAC 

PG&E 
Air Care Plus 

1,503 
Apr 2006 to  

Jul 2016 Quality Maintenance (CQM) 

SCE 

Early Retirement 

5,059 Feb 2010 to Aug 
2016 

Quality Installation (CQI) 

Quality Maintenance (CQM) 

Quality Renovation (CQR) 

Upstream HVAC 

Field Data Collection Study 7 Aug 2016 to Feb 
2017 

NOTE: This table provides the number of distinct customers with participation dates listed in the IOU program 
documentation. Some of these customers participated in multiple programs. 



 

Evergreen Economics  Page 20 

The residential HVAC programs include PG&E’s Quality Maintenance and SCE’s Quality 
Installation programs. These programs were the focus of our Phase I research, for which 
the AMICS approach was originally developed. The updated AMICS model for these 
programs utilizes more recent program data to demonstrate improvements we have made 
to the customer segmentation process, along with improved graphics and model fit 
diagnostics. 

The PG&E Home Energy Reports (HERs) program produces relatively small energy 
savings, but the opt-out randomized control trial (RCT) design makes it feasible to 
estimate net savings at the program level. We received a large sample of treatment and 
control group customers from the Gamma Wave of the HERs program, which includes a 
diverse population of households from all energy usage quartiles across PG&E's service 
territory. This HERs analysis adapts the AMICS approach for use in an RCT program 
evaluation, with control group matching and energy savings estimated with a difference-
of-differences approach.  

We focused on three commercial HVAC programs, including Air Care Plus, Quality 
Maintenance, and Quality Installation. These programs incentivize a variety of HVAC 
improvement activities including the purchase and installation of new efficient HVAC 
systems and/or maintenance contracts for system repairs and tuning. The remaining 
commercial HVAC programs (Early Retirement, Quality Renovation, and Upstream 
HVAC) had small participant populations with limited program tracking documentation. 
We decided to focus on the larger programs for this phase of commercial modeling. 

In addition to these programs, Evergreen received data from SCE’s recent Commercial 
HVAC Quality Installation field data collection study.18 These data included a small 
sample of commercial customers with thorough on-site testing and metering of individual 
HVAC units, both before and after system upgrades. We obtained both HVAC metering 
and whole building AMI billing data for this sample to use as a case study of commercial 
load disaggregation with the AMICS approach. 

2.2.2 Customer Account and Billing Data 
SCE and PG&E provided Evergreen with AMI hourly or 15-minute interval electricity 
billing data and account characteristics for each customer participating in one or more of 
the IOU programs listed in Table 4. The AMI billing data for this study contained nearly 
5.2 billion observations from November 1, 2010, to October 31, 2017. For consistency across 
customers in the study, all 15-minute interval billing data were aggregated to the hourly 

 

18 National Comfort Institute Inc., Energy Solutions, and Solaris Technical LLC conducted this Commercial 
HVAC Quality Installation field data collection study to support SCE’s program development. 
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level. These data capture energy usage patterns of each customer before, during, and after 
program participation.  

Many of these customers are likely duel-fuel with natural gas or other fuels besides 
electricity. As the original study was designed around a need for reliable, hourly interval 
load shape predictions for program evaluations, this phase of research was focused on 
electricity. Future work should extend this research to gas programs to demonstrate the 
applicability of the AMICS approach and this research for gas utilities.  

2.2.3 Weather 
Evergreen appended weather data obtained from the National Oceanic and Atmospheric 
Administration (NOAA) to develop a database that includes both AMI consumption 
information and hourly weather data for each customer site. We identified weather 
stations for each customer based on the stations' proximity to the zip code of the 
customer's building, within the same CEC climate zone. Next, we identified unreasonably 
high or low outdoor temperature readings, based on the record high and low 
temperatures in each climate zone.19 Missing temperature readings and those identified as 
unreasonable were imputed with the average of the preceding and following temperature 
reads. In the rare instances where this imputation was not sufficient, we relied on 
temperature readings from the next closest weather station. The distribution of 
participating customers across counties and climate zones is shown in Figure 6. 

 

19 Pacific Energy Center’s Guide to: California Climate Zones and Bioclimatic Design, October 2006. 
https://www.pge.com/includes/docs/pdfs/about/edusafety/training/pec/toolbox/arch/climate/califor
nia_climate_zones_01-16.pdf 
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Figure 6: Participating Customers by County and Climate Zone 
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3 AMICS Applications 

3.1 Residential HVAC 
This section provides our analysis of two residential HVAC programs: PG&E’s Quality 
Maintenance (QM) and SCE’s Quality Installation (QI) programs. Evergreen originally 
developed the AMICS approach using prior participants of these two programs, described 
in the Phase I report finalized in February 2016. The new batch of participants we received 
for Phase II provided us with an opportunity to test and demonstrate improvements to 
customer segmentation and interpretation of the variation in savings across participants.  

The SCE QI program provides a good candidate program for testing the AMICS model 
approach, with a participant pool of 2,126 customers and ex ante savings of over 5 percent, 
including new HVAC equipment and strict installation protocols that will improve the 
likelihood that savings will be detectable using a billing regression. The PG&E QM 
program has a larger population of nearly 30,000 participants but smaller ex ante savings 
(<5%) from HVAC testing and maintenance activities as needed. The savings from QM are 
not just smaller, but also more varied across customers than the QI program. This reduces 
the likelihood that we will be able to detect statistically significant savings with billing 
analysis.  

We used similar filters and segmentation strategies for both residential HVAC programs. 
The holdout tests for both programs demonstrate that the AMICS model is able to produce 
accurate estimates of load shapes for participants of residential HVAC programs, 
accounting for the variation in load shapes across all four seasons. The AMICS model 
detected statistically significant savings for the QI program, consistent with our 
expectations by season and time-of-day for improved air conditioning efficiency. The QM 
program savings estimated by our model were not statistically significant during most 
hours, despite the tight error bounds around our predictions. However, the AMICS 
segmentation revealed a wide variation in energy savings across customer segments and 
weather conditions, with more substantial energy savings being realized by high energy 
users on days with low to moderate cooling loads. 

3.1.1 SCE Quality Installation 

Program Description   
The SCE Quality Installation (QI) program is a California statewide program designed to 
achieve energy and demand savings through the installation of replacement split or 
packaged HVAC systems in accordance with industry standards.  
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Each home participating in the SCE QI program replaced an existing HVAC system20 

using an installation contractor who received additional training in quality installation 
practices through the program. The contractor is responsible for ensuring that the air 
conditioning unit is sized properly for the home and installing the new unit based on strict 
ENERGY STAR requirements, as well as connecting it to the ductwork/distribution 
system.21 The quality installation theoretically improves cooling delivery (from reduced 
runtime and/or power draw) by preventing common installation problems that may cause 
the new unit to operate below its energy efficiency specification.  

Note that the savings estimates from the AMICS model are measured as the difference in 
predicted and actual usage in the post-installation period. In the analysis presented here, 
the entire decrease in residential energy consumption is attributed to the QI program. This 
is consistent with the interpretation for any billing regression model used to estimate gross 
impacts.22  

Database 
SCE provided Evergreen with AMI billing data and account characteristics for the 2,126 
distinct residential customers who participated in the QI program between December 2013 
and May 2016. The SCE QI program data included HVAC technology type (central air 
conditioner vs. heat pump), installation date(s), SEER rating, size in tons, BTU per hour, ex 
ante gross energy and demand savings, climate zone, building type, and monthly rate 
schedule.  

The AMI billing data for this study contained approximately 64 million hourly or 15-
minute intervals from January 1, 2014 to September 23, 2016.23 These data captured energy 
usage patterns of most households for a full year before their participation in the program. 

We applied filters to exclude customers with:  

• Net energy metering, such as onsite solar generation (n=341);  
• No pre-period observations in the billing data (n=15); or  
• Extreme changes from the pre- to post-periods of more than 150 percent or less than 

 

20 Eligible homes installed a new package or split system air conditioner or heat pump with a Seasonal 
Energy Efficiency Ratio (SEER) of 14 or greater. 
21 ANSI/ACCA 5 QI-2010: HVAC Quality Installation Specification  
22 It should also be noted that California (through Assembly Bill 802) is moving toward a new evaluation 
protocol where meter-based savings would be calculated; consequently, the existing equipment conditions 
would be used to measure savings. The method demonstrated here for the QI program is consistent with the 
Assembly Bill 802 approach. 
23 For consistency across customers in the study, all 15-minute interval billing data were aggregated to the 
hourly level before analysis. 



 

Evergreen Economics  Page 25 

-66 percent (n=22).  

These data screens reduced the analysis sample to 1,748 customers for the SCE QI 
program.  

As shown in  

Figure 7, this sample covers many different counties and climate zones, with a large 
number of participants concentrated in Los Angeles and surrounding cities. All of the 
participant dwellings (100%) were single-family homes. The homes ranged in size from 
425 to 5,500 square feet, with an average of 1,900 square feet. Nearly one third (30%) of the 
participants installed HVAC equipment with a SEER rating of 18, but most of the installed 
equipment had a SEER rating of at least 16 (81%). One third (33%) were enrolled in one or 
more demand response programs, including 377 customers with direct load control 
switches that allow SCE to cycle their air conditioning equipment during summer peak 
events. One advantage of the AMICS modeling approach is that individual demand 
response event days can be excluded from the model, to avoid mis-attributing changes in 
peak load (i.e., savings) exhibited by participants to the HVAC program participation that 
are actually caused by demand response program participation.  
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Figure 7: SCE Residential QI Participants by County and Climate Zone 

 

Segmentation 
For the SCE QI program, we defined customer segments with a combination of daily 
energy usage (magnitude) and normalized load shape (hours of use) in the pre-period. 
First, we assigned customers to one of seven bins by their average daily energy usage 
across the most recent pre-period year, with the highest energy usage bin containing the 
fewest customers. Next, we used k-means clustering to identify the seven unique clusters 
shown in Figure 8, each containing a subset of customers with similar load shapes during 
the pre-period. These load shapes exhibit the diversity in energy usage patterns we 
identified within the population of QI participants. Some of these participants' peak 
energy usage occurs as early as 6:00 a.m., while for others, peak energy usage occurs as 
late as 9:00 p.m.  
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Figure 8: SCE Residential QI Normalized Load Shape Bins 

 

This segmentation approach defines 49 customer segments and 104 day bins, for a total of 
5,243 distinct customer-day bins.24 

Holdout Validation Tests 
The results of one holdout test are shown in Figure 9, comparing the predicted pre-period 
load shape from the model (red line) to the actual pre-period load shape for the holdout 
sample (blue line). When the model is performing well, the two lines will overlap. The 
holdout test relies exclusively on pre-period data so that any differences between the 
predicted and actual energy usage can be attributed to model error, not to program 
savings. The model predictions track closely with the average actual load, slightly 
underestimating load during a few morning and evening hours. The AMICS model is able 
to reasonably predict the differences in the hourly load across all four seasons as shown in 
Figure 10, despite differences in weather conditions and schedules.  

 

24 The 49 customer segments are distinct combinations of 7 energy usage bins and 7 load shape clusters. The 
104 day segments are comprised of 8 CDD bins, 8 HDD bins, 2 day types, and 4 seasons. Not all possible 
combinations of the customer and day segments were observed in the pre-period data. 
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Figure 9: SCE Residential QI Holdout Validation Test 

 
 

Figure 10: SCE Residential QI Holdout Validation Test by Season 

 

Program Energy Savings 
Figure 11 compares the post-period predicted load shape (red) with the actual post-period 
load shape (blue) across all residential QI participants in the database. This prediction is 
based on the pre-period energy consumption model and post-period weather data; it 
represents the expected load shape for these customers in absence of the program 
intervention. The error of each hourly prediction is depicted as a 95 percent confidence 
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interval in the shaded area around each estimate. Whenever the actual post-period load 
shape (blue line) falls outside the predicted post-period load region (red area), this 
indicates that a statistically significant change was observed during that hour. In this case, 
the actual post-period load shape (blue) falls below the predicted load shape (red) during 
all hours, with substantial changes in the afternoon and early evening hours, when we 
would expect the majority of cooling load to occur. This is consistent with the seasonal 
load shapes in Figure 12, where we see a significant reduction in load during the summer 
and fall months, but only minor changes in the winter and spring.  

Figure 11: SCE Residential QI Post-Period 
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Figure 12: SCE Residential QI Post-Period by Season 
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Figure 13 shows our estimated hourly kWh savings across the entire post-period, with 
error bars depicting 95 percent confidence intervals around each estimate. The SCE 
residential QI participants exhibited statistically significant energy savings during 23 of 
the 24 hours, with the exception being 4:00 a.m. Overall, we estimate that the SCE 
residential QI program resulted in energy savings of 1.67 kWh ± 0.77 per day (or 6.0% ± 
2.8%).  

Figure 13: SCE Residential QI Estimated Savings 

 

Figure 14 depicts the estimated savings in each of the four seasons. The AMICS model 
found positive and statistically significant energy savings in the summer and fall, with 
small and mostly insignificant savings in the winter and spring. These findings are 
consistent with our expectations since the vast majority of participants (97%) installed new 
central air conditioners, and only heat pumps (3%) would provide savings for both cooling 
and heating seasons.   
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Figure 14: SCE Residential QI Estimated Savings by Season 

 

Savings by Segment 
Figure 15 shows the average daily savings estimated by the AMICS model by pre-period 
energy usage and cooling load. The columns show the cooling load by CDD bin (hottest 
days on the right), and the rows show customers segmented by their average daily energy 
usage (lowest users on the bottom). We automatically color-coded the cells with the 
highest kWh savings in dark green and the lowest in dark orange (negative savings = 
increased usage); the yellow cells fall in the middle of this spectrum.  

As this figure shows, customers with the lowest energy usage in the pre-period (rows 1 
and 2) realized negative energy savings (i.e., increased energy usage) from the residential 
QI program across most observed levels of cooling load. One possible reason for this is 
that these low energy users did not use their air conditioning equipment before the 
program due to the high cost of operating inefficient cooling equipment. Hence, the 
residential QI program led them to increase space cooling and increase their overall 
energy usage on hot days. Fortunately, these increases were offset by substantial energy 
savings realized by moderate to high energy users (rows 4 through 7).   
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Figure 15: SCE Residential QI Energy Savings by Usage Bin and CDD Bin 

 

Figure 16 shows the average daily energy savings by pre-period load shape and cooling 
load. Corresponding to the load shapes shown in Figure 17, the customers with the flattest 
load shapes are at the bottom and the steepest are at the top. Independent of their daily 
energy usage in the baseline period, we see patterns in savings by the customers’ load 
shape in the pre-period. Customers in load shape bin 02 had two peaks, one around 7:00 
a.m. and another around 5:00 p.m.; this shape is common among homes with electric 
heating and low to moderate air conditioning usage. The heat table shows that customers 
in bin 02 realized positive energy savings (green) at all levels of cooling load, indicating 
that the program intervention reduced energy usage for days with cooling, heating, and 
ventilation needs. On the other end of the spectrum, customers in load shape bin 05 had 
negative savings (orange) during most weather conditions. This group’s load shape 
reaches a peak at 7:00 p.m.; this is later than we would expect for a site with a high air 
conditioning load and suggests that HVAC is not the main driver of their peak usage. In 
general, we see that a customer’s baseline load shape (and existing conditions) has an 
impact on the energy savings we can attribute to the program intervention.  
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Figure 16: SCE Residential QI Energy Savings by Load Shape and CDD Bin 

 

Figure 17: SCE Residential QI Load Shape Bins 
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Overall, the AMICS model estimated that the average energy savings attributable to the 
SCE residential QI program were 1.67 kWh ± 0.77 per day (or 6.0% ± 2.8%) with 
statistically significant savings in all but one hour of the day. The AMICS segmentation 
revealed some variation in energy savings across customer segments and weather 
conditions.  

Key findings: 

• The model holdout test performed very well, with the AMICS model predicting 
energy use for the holdout sample within 1 percent error. This confirms findings 
from the Phase I research showing that the AMICS model performs well with 
residential customers, with reasonable load shape predictions for this type of 
program. 

• Energy impact estimates are consistent with expectations and are occurring during 
the expected times of day (late afternoon/early evening). 

• The AMICS model tracks well with the changes in load shapes across seasons. The 
seasonal impact estimates also conform to expectations, with larger savings shown 
in the summer and fall. 

3.1.2 PG&E Quality Maintenance 

Program Description 
The PG&E Quality Maintenance (QM) program is part of a California statewide program 
designed to achieve energy and demand savings through assessment and optimization of 
existing residential HVAC units.25 Participants are enrolled in an ongoing maintenance 
agreement with a qualifying contractor (who has received additional training through the 
program) who performs two maintenance calls per year—once in the pre-cooling season 
and once in the pre-heating season. During each visit, the contractor conducts a full ACCA 
Standard 4 HVAC System Assessment and then performs any required maintenance. 
Examples of these maintenance activities include blower motor retrofits, enhanced time 
delay relay, airflow correction, and refrigerant charge adjustment. These activities should 
improve cooling delivery (from reduced runtime and/or power draw) and thereby 
improve efficiency.  

Database 
PG&E provided Evergreen with AMI billing data and account characteristics for the 31,705 
distinct residential customers who participated in the QM program between January 2015 
and July 2016. The PG&E QM program data included household and program 

 

25 Eligible homes must have a central forced air conditioner or heat pump and be a single-family home or 
duplex. 
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participation information such as HVAC technology type, maintenance activity 
description by date(s), ex ante gross energy and demand savings, premise type, and rate 
schedule.  

The AMI billing data for this study contained approximately 650 million hourly 
observations from January 1, 2014 to July 31, 2017.26 These data captured energy usage 
patterns of most households a full year before their participation in the program. 

We applied filters to exclude customers with:  

• No non-zero ex ante savings listed in the program documentation (n=2,053);27 
• Net energy metering, such as onsite solar generation (n=2,342);  
• No pre-period observations in the billing data (n=533); or 
• Average energy usage in the pre- or post-period of less than 0.1 kWh or extreme 

changes from the pre- to post-periods of more than 150 percent or less than -66 
percent (n=326).  

These filters reduced the analysis dataset to 28,504 customers that participated in the QM 
program.   

As shown in Figure 18, this sample was spread across many counties and CEC climate 
zones. The vast majority of participant dwellings (97%) were detached single-family 
homes. Nearly a quarter (18%) were enrolled in one or more demand response programs, 
including 4,166 customers with direct load control switches that allow PG&E to cycle their 
air conditioning equipment during summer peak events. Again, observations of energy 
usage on event days can be excluded to avoid double-counting peak load reductions (i.e., 
savings) that should be attributed to participation in a demand response program. 

 

26 For consistency across customers in the study, all 15-minute interval billing data were aggregated to the 
hourly level. 
27 Some QM program participants did not require any adjustments (i.e., tests revealed that their system did 
not need any maintenance); these participants were excluded from our post-period analysis because they 
would not have any energy savings attributable to the program. 
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Figure 18: PG&E Residential QM Participants by County and Climate Zone 

 

Segmentation 
For the PG&E QM program, we defined customer segments with a combination of daily 
energy usage (magnitude) and normalized load shape (hours of use) in the pre-period. 
First, we assigned customers to one of 10 bins by their average daily energy usage across 
the most recent pre-period year, with the highest energy usage bin containing the fewest 
customers. Next, we used k-means clustering to identify the 10 unique clusters shown in 
Figure 19, each containing a subset of customers with similar load shapes during the pre-
period. These load shapes exhibit the diversity in energy usage patterns we identified 
within the population of residential QM participants. Some customers have relatively flat 
load shapes with little change in energy usage throughout the day, while others ramp up 
to a steep peak in the morning or evening hours. 
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Figure 19: PG&E Residential QM Normalized Load Shape Bins 

 

This segmentation approach defines 100 customer segments and 117 day bins for a total of 
11,700 distinct customer-day bins.28 

Holdout Validation Tests 
The results of one holdout test are shown in Figure 20, comparing the predicted pre-period 
load shape from the model (red line) to the actual pre-period load shape for the holdout 
sample (blue line). The holdout test relies exclusively on pre-period data so that any 
differences between the predicted and actual energy usage can be attributed to model 
error, not to program savings. The model predictions track closely with the average actual 
load, with the two lines nearly indistinguishable. The AMICS model is able to accurately 
predict the differences in the hourly load across all four seasons for the PG&E residential 
QM program population, shown in Figure 21.  

 

28 The 100 customer segments are distinct combinations of 10 energy usage bins and 10 load shape clusters. 
The 117 day bins are comprised of 8 CDD bins, 10 HDD bins, 2 day types, and 4 seasons. Not all possible 
combinations of the customer and day segments were observed in the pre-period data. 
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Figure 20: PG&E Residential QM Holdout Test 

 

Figure 21: PG&E Residential QM Holdout Test, by Season 
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Program Energy Savings 
Figure 22 and Figure 23 compare the post-period predicted load shape (red) with the 
actual post-period load shape (blue) across all residential QM program participants in the 
database. This prediction is based on the pre-period energy consumption model and post-
period weather data; it represents the expected load shape for these customers in absence 
of the program intervention. The error of each hourly prediction is depicted as a 95 percent 
confidence interval in the shaded area around each estimate. Whenever the actual post-
period load shape (blue line) falls outside the predicted post-period load region (red area), 
this indicates that a statistically significant change was observed during that hour. In this 
case, the actual post-period load shape (blue) falls just below the predicted load shape 
(red) during most hours, but the difference is minor.  

Figure 22: PG&E Residential QM Actual versus Predicted Post-Period 
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Figure 23: PG&E Residential QM Actual versus Predicted Post-Period, by Season 

 

 
Figure 24 shows our estimated hourly kWh savings across the entire post-period, with 
error bars depicting 95 percent confidence intervals around each estimate. The PG&E 
residential QM program participants exhibited energy savings during all 24 hours, but 
these reductions in energy usage were only statistically significant during the morning 
hours of 6:00 a.m. to 8:00 a.m. Overall, we estimate that the PG&E QM program resulted in 
energy savings of 0.22 kWh ± 0.45 per day (or 0.9% ± 1.8%).  

Figure 24: PG&E Residential QM Estimated Savings 
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Figure 25 depicts the estimated savings in each of the four seasons. The AMICS model 
revealed an increase in energy usage (negative savings) during the peak hours of the 
summer. It is possible that the residential QM program’s HVAC maintenance activities led 
participants to increase cooling during the summer to improve comfort (e.g., customers 
did not bother to use their cooling equipment as often when it was not functioning 
properly, leading to an increase in usage after the program intervention). Positive energy 
savings were detected in all other months, with the majority of savings occurring during 
peak hours of the fall.  

Figure 25: PG&E Residential QM Estimated Savings by Season 

 

Savings by Segment 
Figure 26 shows the average daily savings estimated by the AMICS model by pre-period 
energy usage and cooling load. The columns show the cooling load by CDD (hottest days 
on the right), and the rows show customers segmented by their average daily energy 
usage (lowest users on the bottom). We automatically color-coded the cells with the 
highest kWh savings in dark green and the lowest in dark orange (negative savings = 
increased usage); the yellow cells fall in the middle of this spectrum.  

As this figure shows, customers with higher energy usage in the pre-period realized 
higher energy savings from the residential QM program across all observed levels of 
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cooling load. Across all customer segments, participants realized greater energy savings 
on days with low to moderate cooling load (left), and most had negative savings on the 
hottest days (far right). This is consistent with the post-period seasonal load shapes, which 
indicated that the average participants increased their energy usage in the summer months 
and realized savings during the cooler months.  

Figure 26: PG&E Residential QM Energy Savings by Usage Bin and CDD 

 

Overall, the AMICS model estimated that the average energy savings attributable to the 
PG&E residential QM program were 0.22 kWh ± 0.45 per day (or 0.9% ± 1.8%), which is 
not statistically significant. The average hourly impact results are also statistically 
insignificant during most hours of the day. However, the AMICS segmentation revealed a 
wide variation in energy savings across customer segments and weather conditions, with 
more substantial energy savings being realized by high energy users on days with low to 
moderate cooling loads.  

Key findings:  

The small average savings provides an example of how more traditional billing 
regressions obscure impacts by aggregating everything to a single customer average using 
monthly billing data. With the AMICS model, even when the overall average program 
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savings is not statistically significant, the detailed customer bins allow us to identify 
subsets of customers that are achieving significant savings. This information could be used 
by the IOUs to target similar customers for future program participation.  

3.2 Home Energy Reports 
There are three key benefits of a segmented modeling approach for estimating energy 
savings attributable to a Home Energy Reports program: 

1. Predictive power. Creating separate predictions for each customer segment limits 
the variation across customers for which each model must account. Our previous 
research has demonstrated that segmentation is a useful tool to reduce error in load 
shape predictions, improving the predictive power of our models.  

2. Segmentation accomplishes the same goal as matching. In some cases, 
randomized group assignment is not sufficient to produce balanced samples with 
similar energy usage patterns in the baseline period. Segmentation in the baseline 
period identifies and groups customers with similar load shapes, seasonality, and 
climate prior to any change in the program treatment. Performing difference-of-
differences calculations within each customer segment improves the validity of our 
comparisons, focusing on the impact of any difference in the program treatment. 

3. Ease of distributional impact analysis. The AMICS modeling approach creates 
separate model predictions and estimated post-period changes (i.e., energy savings) 
for each customer segment simultaneously. We do not simply provide the average 
treatment effect; instead, we expose the variation in treatment effects across 
program participants associated with key differences in the characteristics and 
energy usage patterns of these customers in the baseline period.  

Program Description 
The PG&E Home Energy Reports (HERs) program is part of a California statewide 
program designed to achieve energy and demand savings through customized reports 
with peer comparisons (energy usage by home type, size, and heating source) and 
customized tips for saving energy. The HERs program produces relatively small energy 
savings, but the opt-out randomized control trial (RCT) design makes it feasible to 
estimate net savings at the program level.  

The program is designed as an RCT, utilizing a control group to estimate any natural 
change in energy consumption that occurs from the pre- to post-intervention period. The 
program impacts are estimated as the change in the treatment group, above and beyond 
any naturally occurring change exhibited by the control group. Note that for the HERs 
program, the existing conditions in the pre-implementation period are the appropriate 
baseline and therefore, no additional adjustments are needed to the baseline to calculate 
program impacts. 
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SCE’s Gamma Wave customers have been receiving HERs (i.e., “being treated”) since 
November of 2011.29 The Gamma Wave includes residential customers from all energy 
usage quartiles and fuel types (i.e., electric only and duel-fuel). They received three initial 
monthly reports, followed by bi-monthly (standard frequency) or quarterly (reduced 
frequency) reports.  

We selected the Gamma Wave for Phase II because it provides a large sample of 
residential customers across PG&E's entire service territory, stratified by usage quartile. 
Hence, all observations of the control group and the treatment group pre-period provide a 
diverse sample that is expected to be representative of the broader population of 
residential customers. In addition to testing whether AMICS can detect small energy 
savings, the HERs program provides an opportunity to study the benefits of segmentation 
with a large and diverse sample of households. 

Database 
PG&E provided Evergreen with account characteristics for the 152,292 distinct residential 
customers who were enrolled in the HERs Gamma Wave. The PG&E HERs program data 
included only the HERs wave assignment (i.e., gamma treatment vs. gamma control) and 
premise baseline territory (R, S, T, W, X).30  

The AMI whole-home billing data for this study contained nearly 3.8 billion hourly 
observations from November 1, 2010 to October 31, 2013.31 The treatment group received 
its first report on November 1, 2011; hence, these data captured energy usage patterns of 
most households for a full year of the pre-period and for two full years of the post-period. 

We applied filters to exclude customers with:  

• No pre-period observations in the billing data (n=4,222); 
• Extreme changes from the pre- to post-periods of more than 150 percent or less than 

-66 percent (n=4,740); or 
• Average energy usage in the pre- or post-period of less than 0.1 kWh (n=662). 

 

29 The Gamma Wave refers to the third round of program implementation. It follows the original Alpha 
Wave pilot and the Beta Wave launched in August 2011 to the top quartile of energy users in the San 
Francisco Bay area. Each ‘wave’ is comprised of residential customers assigned by PG&E to a treatment or 
control group. 
30 PG&E baseline territories: https://www.pge.com/nots/rates/PGECZ_90Rev.pdf 
31 For consistency across customers in the study, all 15-minute interval billing data were aggregated to the 
hourly level. 
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As a result, the AMI analysis was limited to 142,668 customers, including 71,344 report 
recipients and 71,324 controls. As shown in Figure 27, these customers were spread across 
many counties and CEC climate zones.  

Figure 27: PG&E HERs Participants by County and Climate Zone 

 

To reduce processing burden, we selected a random sample of 75,500 customers from 
PG&E’s Gamma Wave, stratified by premise baseline (defined by PG&E) and group to 
ensure the sample had a representative assortment of report recipients and controls. 

Segmentation 
For the HERs program, we defined customer segments with a combination of daily energy 
usage (magnitude) and normalized load shape (hours of use) in the pre-period. First, we 
assigned customers to one of 20 bins by their average daily energy usage across the most 
recent pre-period year, with the highest energy usage bin containing the fewest customers.  
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Next, we used k-means clustering to identify the 10 unique clusters shown in Figure 28, 
each containing a subset of customers with similar load shapes during the pre-period.  

Figure 28: PG&E HERs Normalized Load Shape Bins 

 

This segmentation approach defines 122 customer segments and 107 day bins, for a total of 
13,054 distinct customer-day bins.32 

Holdout Validation Tests 
The results of one holdout test are shown in Figure 29, comparing the predicted pre-period 
load shape from the model (red line) to the actual pre-period load shape for the holdout 
sample (blue line). When the model is performing well, the two lines will overlap. The 
holdout test relies exclusively on pre-period data so that any differences between the 
predicted and actual energy usage can be attributed to model error, not to program 
savings. The model predictions track closely with the average actual load, with a slight 
underestimation of energy usage in the treatment group during the afternoon hours and 
nearly perfect predictions for the control group.  

 

32 The 122 customer segments are distinct combinations of 20 energy usage bins and 10 load shape clusters. 
The 107 day bins are comprised of 8 CDD bins, 9 HDD bins, 2 day types, and 4 seasons. Not all possible 
combinations of the customer and day segments were observed in the pre-period data. 
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Figure 29: PG&E HERs Holdout Test 
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As shown in Figure 30, the AMICS model is able to accurately predict the hourly load 
across all four seasons and two groups, within 1 percent of the actual load. 

Figure 30: PG&E HERs Holdout Test by Season and Group 
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Program Energy Savings 
This section provides our estimates for the energy savings experienced by customers that 
can be attributed to the HERs program, based on the AMICS model and a stratified 
random sample of recipient and control customers (n=75,500). 

Figure 31 compares the post-period predicted load shape (red) with the actual post-period 
load shape (blue) across all customers in the HERs Gamma Wave sample. This prediction 
is based on the pre-period consumption model and post-period weather data; it represents 
the expected load shape for these customers in absence of the HERs program. The error of 
each hourly prediction is depicted as a 95 percent confidence interval in the shaded area 
around each estimate. The timeline depicted in these charts starts after the first Home 
Energy Report was mailed to the treatment group in November 2011 and spans two years 
of the post-period, allowing time for the reports to influence measure adoption and 
changes in behavior. Whenever the actual post-period load shape (blue line) falls outside 
the predicted post-period load region (red area), this indicates that a statistically 
significant change was observed during that hour.  

The AMICS model detected reductions in the whole-building energy usage of the report 
recipients (i.e., treatment group), for a total reduction of 0.3 kWh per day, or 1.5 percent. 
Not all of the customers who received the HERs will have taken action to reduce their 
energy usage, but they all received the program mailings. The AMICS model also detected 
some reductions in energy usage by the control group of 0.18 kWh or 0.9 percent.  

Figure 31: HERs Model Predictions vs. Actual Load in Post-Period 
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Figure 32 shows the estimated hourly change in kWh by group for a difference-of-
differences estimation, with error bars depicting 95 percent confidence intervals around 
each estimate. The difference-in-differences between the control and treatment groups are 
performed within each customer-day segment and then weighted by the number of 
observations in the treatment group during the post-period. This helps to control for any 
known differences in the composition of customers and weather conditions in the control 
and treatment groups.33   

The treatment group (in green) exhibited reductions in energy usage across all hours of the 
day. The control group (in orange) exhibited a similar pattern with the exception of slight 
increases in their energy usage from 3:00 a.m. to 5:00 a.m. During all 24 hours, the 
treatment group experienced greater reductions in energy usage than the control group, 
though the differences were not statistically significant. The treatment group experienced 
an overall reduction in energy usage of 0.30 kWh per day, while the control group 
decreased their usage by 0.18 kWh per day. As the control group provides our best 
estimate of the natural change that the treatment group would have experienced without 
the program, we estimate the total program impact to be a reduction of 0.12 kWh ± 0.21 
per day (0.6% ± 1.0), as shown in Figure 33. The AMICS model does detect energy savings 
that we attribute to the HERs program treatment; however, these savings are not 
statistically significant at the program level.  

 

33 This comparison is restricted to customer and day segments that were observed in the post-period with 
both treatment and control households. This restriction is minor, as less than 1 percent of treatment customer 
days in the post-period had no similar customers or days in the control group during the post-period; 
unusual customers and days were automatically removed from the comparison. The post-period contains 
4.23 million observations in 4,922 distinct customer-day segments, whereas this difference-in-differences 
comparison is based on 4.22 million observations from 4,023 customer-day segments (99.9% and 81.7%, 
respectively).  
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Figure 32: HERs Comparison of Post-Period Changes

 

Figure 33: HERs Estimated Energy Savings 
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Figure 34 shows the estimated hourly change in kWh by group for a difference-of-
differences estimation by season. The treatment group (in green) and control group (in 
orange) exhibited an increase in energy usage in the spring during the afternoon and 
evening hours. The treatment group experienced an overall increase in energy usage of 
0.15 kWh per day in the spring months of the post-period, while the control group 
increased their usage by 0.26 kWh per day. As the control group provides our best 
estimate for how the treatment group would have continued to use energy in absence of 
the HERs program intervention, we estimate the HERs program led to energy savings of 
0.11 kWh in the spring, as shown in Figure 35. 

Figure 34: HERs Comparison of Post-Period Changes, by Season 
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Figure 35: HERs Estimated Energy Savings, by Season 

 

Savings by Segment 
The segmentation in the AMICS model provides a unique opportunity to see the variation 
in program savings by customer segment and weather.  

Figure 36 shows the average daily savings estimated by the AMICS model by season and 
cooling load. The columns show the four seasons, and the rows show customers 
segmented by their pre-period load shape. Corresponding to the load shapes shown in 
Figure 37, the customers with the flattest load shapes are at the bottom and the steepest are 
at the top. We automatically color-coded the cells with the highest kWh savings in dark 
green and the lowest in dark orange (negative savings = increased usage); the yellow cells 
fall in the middle of this spectrum.  

As this figure shows, the HERs program impacts differ across the customer segments, with 
each segment exhibiting a different pattern of energy savings across the seasons. For 
example, the customers with the flattest pre-period load shape (load shape bin 01) had 
little to no savings in the summer or fall, but saved over 10 percent in the winter months. It 
is likely that these customers did not use much energy for cooling, and thus had less 
potential for savings in the summer months despite receiving the reports, whereas 
customers with the steepest pre-period load shape (load shape bin 10) realized savings 
across all four seasons.  
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Figure 36: PG&E HERs Energy Savings by Load Shape Bin and Season 

 

Figure 37: PG&E HERs Load Shape Bins 
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Overall, the AMICS model estimated that the average energy savings attributable to the 
HERs program treatment was 0.12 kWh per day, or 0.6 percent. These savings varied 
substantially across customer segments.  

3.3 Commercial & Industrial HVAC  
This section provides our analysis of multiple commercial HVAC programs. Commercial 
customers typically have greater variations in energy use across sites given the diversity of 
building types, end uses, and business activities relative to the residential sector. These 
programs provide an initial test of whether the AMICS model can be adapted to predict 
load shapes for commercial customers using only AMI billing data.  

We used similar filters and segmentation strategies for each of the commercial HVAC 
programs. The holdout tests for each program demonstrate that the AMICS model is able 
to produce reasonable estimates of load shapes for participants of commercial HVAC 
programs, with predictions within 1 percent of the actual usage of the holdout sample. The 
AMICS model detected statistically significant savings for the PG&E Air Care Plus 
program, consistent with our expectations by season and time-of-day for improved air 
conditioning efficiency. The Commercial Quality Maintenance and Quality Installation 
program savings estimated by our model were not statistically significant during most 
hours at the program level, despite the tight error bounds around our predictions.  

In each of the commercial programs, the AMICS segmentation revealed a wide variation in 
energy savings across customer segments. We found consistent energy savings attributed 
to HVAC interventions for participants in the retail sector, but these were offset (at least in 
part) by increases in energy usage attributed to participants in the manufacturing and 
health sectors. These findings suggest that the commercial HVAC programs could benefit 
from improved targeting. 

3.3.1 PG&E Commercial Quality Maintenance and Air Care Plus 

Program Description 
The PG&E Commercial Quality Maintenance (CQM) program is part of a California 
statewide program designed to achieve energy and demand savings through assessment 
and optimization of existing commercial HVAC units.34 Qualifying contractors have six 
months to repair the HVAC units to meet the program criteria or meet the ACCA 180 
Standard before the customers receive incentive payments. CQM participants sign an 

 

34 Eligible buildings must have a commercial rooftop HVAC unit that weighs at least three tons. (or has a 
capacity greater than 3 tons). Most qualified buildings will have multiple rooftop HVAC units, and 
participants can choose to service all of their units or only a subset. 
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agreement with the contractor to receive quarterly system assessments and then perform 
any required maintenance.  

The PG&E Air Care Plus program is similar but only requires a one-time HVAC 
maintenance visit with no industry standards to meet. Examples of the HVAC 
maintenance activities include refrigerant charge adjustment, coil cleaning, blower motor 
retrofits, enhanced time delay relay, airflow correction, and installation of a programmable 
thermostat. These activities should improve cooling delivery (from reduced runtime 
and/or power draw) and thereby improve efficiency.  

Note that for the CQM and Air Care Plus programs, the existing conditions in the pre-
participation period are the appropriate baseline and therefore, no additional adjustments 
are needed to the baseline to calculate program impacts. The savings estimates would 
benefit from utilizing a comparison group, however, which we were not able to explore in 
this analysis due to the data limitations discussed previously.  

Database 
PG&E provided Evergreen with AMI whole-building billing data and account 
characteristics for 1,503 distinct commercial customers that received incentives for HVAC 
maintenance between April 2006 and July 2016, including 1,205 CQM participants and 298 
Air Care Plus participants. The PG&E program data included customer and program 
participation information such as HVAC technology type, maintenance activity 
description by date(s), ex ante gross energy and demand savings, building type, business 
NAICS code, and rate schedule.  

The AMI billing data for this study contained approximately 125 million observations 
from November 6, 2011 to July 31, 2016.35 These data captured energy usage patterns of 
most participating businesses for a full year before their program participation. 

We applied filters to exclude customers with:  

• No non-zero ex ante savings listed in the program documentation (n=255);36 
• Net energy metering, such as onsite solar generation (n=67);  
• No pre-period observations in the billing data or average energy usage in the pre- 

or post-period of less than 0.1 kWh or extreme changes from the pre- to post-

 

35 For consistency across customers in the study, all 15-minute interval billing data were aggregated to the 
hourly level. 
36 Some participants did not require any adjustments (i.e., tests revealed that their system did not need any 
maintenance); these participants were excluded from our post-period analysis because they would not have 
any energy savings attributable to the program. 
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periods of more than 150 percent or less than -66 percent (n=172).  

As a result, the AMI analysis was limited to 989 customers. As shown in Figure 38, this 
sample was spread across many counties and CEC climate zones. Half of the buildings 
(51%) were on rate schedules with demand charges, meaning their bill is impacted by their 
maximum demand (kW) in addition to their total energy usage (kWh) during each billing 
cycle. Over a third (36%) were enrolled in one or more demand response programs, with 
the potential to receive incentives for reducing their usage on event days.   

Figure 38: PG&E Commercial HVAC Participants by County and Climate Zone
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Table 5 shows the distribution of industries within the participant population. The top 
four sectors are the same across these two programs, but the distribution is different. Air 
Care Plus participants include proportionally more schools and restaurants, while the 
CQM program includes a higher proportion of offices (e.g., IT and finance). 

Table 5: PG&E Commercial HVAC Participants by Business Type  

NAICS Codes Description 
Air Care Plus 

(n=148) 
CQM 

(n=841) 

5***** 
Information, finance and insurance, real estate, 
management; professional, scientific, and 
technical services 

9% 23% 

44****, 45**** Retail trade 14% 16% 

61**** Educational services 24% 10% 

722*** Food services and drinking places 20% 7% 

62**** Health care and social assistance 5% 7% 

71**** Arts, entertainment, and recreation 7% 7% 

813*** Religious, civic, professional, and similar 
organizations 6% 6% 

- Other 10% 14% 

- Undefined 5% 10% 

 

Segmentation 
For these programs, we defined customer segments with a combination of daily energy 
usage (magnitude), normalized load shape (hours of use), and business type in the pre-
period. First, we assigned customers to one of 20 bins by their average daily energy usage 
across the most recent pre-period year, with the highest energy usage bin containing the 
fewest customers. Next, we used k-means clustering to identify the eight unique clusters 
shown in Figure 39, each containing a subset of customers with similar load shapes during 
the pre-period. Lastly, we used the NAICS codes contained in the utility customer 
information system to identify 20 distinct business types, describing their sector and 
primary business activity. 
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Figure 39: PG&E Commercial HVAC Normalized Load Shape Bins 

 

This segmentation approach defines 395 customer segments and 52 day bins, for a total of 
20,540 distinct customer-day bins.37 

Holdout Validation Tests 
The results of one holdout test are shown in Figure 40, comparing the predicted pre-period 
load shape from the model (red line) to the actual pre-period load shape for the holdout 
sample (blue line). As a reminder, the holdout sample was randomly drawn from the 
population of program participants with AMI data, with a variety of business types. When 
the model is performing well, the two lines will overlap. The holdout test relies exclusively 
on pre-period data so that any differences between the predicted and actual energy usage 
can be attributed to model error, not to program savings. The model predictions track 
closely with the average actual load, with an overall difference of around 1 percent.  

 

37 The 395 customer segments are distinct combinations of 20 energy usage bins, 8 load shape clusters, and 26 
industry groups. The 52 day bins are comprised of 9 CDD bins, 12 HDD bins, and 2 day types (but not 
season). Not all possible combinations of the customer and day segments were observed in the pre-period 
data. 
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Figure 40: PG&E Commercial HVAC Holdout Test 

 

As shown in Figure 41, the AMICS model predictions were less accurate for the holdout 
sample during specific seasons, with slight overestimations during summer afternoons 
and underestimations during these hours of the spring and fall. 

Figure 41: PG&E Commercial HVAC Holdout Test, by Season 
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Program Energy Savings 
Figure 42 compares the post-period predicted load shape (red) with the actual post-period 
load shape (blue) across all CQM and Air Care Plus participants in the database. These 
predictions are based on the pre-period energy consumption model and post-period 
weather data; they represent the expected load shape for these customers in absence of the 
program intervention. The error of each hourly prediction is depicted as a 95 percent 
confidence interval in the shaded area around each estimate. Whenever the actual post-
period load shape (blue line) falls outside the predicted post-period load region (red area), 
this indicates that a statistically significant change was observed during that hour.  

The actual and predicted load shapes of CQM participants are nearly indistinguishable, 
indicating that there were no significant savings. For the Air Care Plus participants, the 
actual post-period load shape (blue) falls below the predicted load shape (red) during 
early morning and afternoon hours, with overall savings of 3.9 percent.  

Figure 42: PG&E CQM/ACP in Post-Period 
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Figure 43 shows our estimated hourly kWh savings across the entire post-period, with 
error bars depicting 95 percent confidence intervals around each estimate by program. The 
PG&E CQM participants realized very limited energy savings, and none of the reductions 
in energy usage were statistically significant. The PG&E Air Care Plus participants 
realized significant energy savings from 1:00 a.m. to 5:00 a.m. and then from 4:00 p.m. to 
11:00 p.m., including the system peak period. Overall, we estimate that the PG&E CQM 
program produced energy savings of 1.3 kWh ± 16.4 per day (or 0.2% ± 2.2%) while the Air 
Care Plus program produced savings of 22.49 kWh ± 9.64 per day (or 3.9% ± 1.4%).  

Figure 43: PG&E Commercial HVAC Estimated Savings 
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Figure 44 depicts the estimated savings in each of the four seasons. The AMICS model 
found positive, though statistically insignificant, savings among CQM participants during 
the spring and winter. We found positive and statistically significant energy savings 
among Air Care Plus participants during peak hours across all four seasons, with the most 
substantial savings on summer days. 

Figure 44: PG&E Commercial HVAC Estimated Savings by Season 
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Savings by Segment 
Table 6 shows the estimated energy savings for the four most common sectors among 
participants. We see a wide range of estimated energy savings by kWh and proportion of 
baseline consumption (%) across customer industries within each program. This can be 
explained, in part, by the variation in ex ante gross savings, which accounts for the HVAC 
size, type, and specific maintenance activities performed. However, there likely are 
additional differences in HVAC controls, operating schedules, and existing conditions that 
contribute to the differences in energy savings realized by participants from each business 
type. 

Table 6: PG&E Commercial HVAC Energy Savings by Business Type 

Business Type 

Estimated Savings Ex Ante Gross Savings 

Air Care CQM Air Care CQM 

kWh %  kWh %  kWh %  kWh %  

Information, finance and insurance, 
real estate, management; 
professional, scientific, and technical 
services 

83.5 8% -5.8 -1% 114.9 12% 73.0 9% 

Retail trade 57.8 14% 10.4 2% 142.2 35% 47.1 7% 

Educational services 32.2 4% -3.3 -1% 67.8 7% 110.6 25% 

Food services and drinking places 19.0 6% -20.1 -3% 17.8 6% 18.5 3% 

Note: Percentages represent kWh savings as a proportion of baseline kWh consumption. 

3.3.2 SCE Commercial Quality Maintenance  

Program Description 
The SCE Commercial Quality Maintenance (CQM) program is part of a California 
statewide program designed to achieve energy and demand savings through assessment 
and optimization of existing HVAC units in commercial and industrial buildings.38 SCE 
CQM participants sign a maintenance agreement with a qualified contractor to receive 
regular system assessments and any maintenance required to maintain HVAC 
performance and meet the ACCA 180 Standard. Note that for the SCE CQM program, the 
existing conditions in the pre-participation period are the appropriate baseline and 

 

38 Most qualified buildings will have multiple rooftop HVAC units, and participants can choose to service all 
of their units or only a subset. 
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therefore, no additional adjustments are needed to the baseline to calculate program 
impacts.  

Database 
SCE provided Evergreen with AMI whole-building billing data and account characteristics 
for 998 distinct commercial customers that received incentives for HVAC maintenance 
between February 2014 and October 2015. The SCE CQM program data included customer 
and program participation information such as maintenance activity description by 
date(s), ex ante gross energy and demand savings, HVAC size (tons), building type, 
vintage, facility size (square footage), business NAICS code, and rate schedule.  

The AMI billing data for this study contained 23 million observations from January 1, 2013 
to September 31, 2016.39 These data captured energy usage patterns of most participating 
businesses for a full year before their program participation. 

We applied filters to exclude customers with:  

• Net energy metering, such as onsite solar generation (n=19);  
• No pre-period observations in the billing data (n=42);  
• No non-zero ex ante savings listed in the program documentation (n=508, retained 

only pre-period observations for the baseline model);40 or 
• Average energy usage in the pre- or post-period of less than 0.1 kWh or extreme 

changes from the pre- to post-periods of more than 150 percent or less than -66 
percent (n=5). 

As a result, the AMI analysis was limited to 932 customers. As shown in Figure 45, this 
sample was concentrated around Los Angeles, with fewer participants in the inland 
counties and mountainous climate zones. Nearly all of these buildings (99%) were on rate 
schedules with time-of-use and demand charges, meaning their bill is impacted by their 
energy usage (kWh) during peak hours and maximum demand (kW) in addition to their 
total energy usage (kWh) during each billing cycle. Almost one half (43%) were enrolled in 
a demand response program, with 34 percent enrolled in a direct load control program 
that allows SCE to cycle their HVAC or other connected equipment to reduce usage on 
event days. 

 

39 For consistency across customers in the study, all 15-minute interval billing data were aggregated to the 
hourly level. 
40 Some participants did not require any adjustments (i.e., tests revealed that their system did not need any 
maintenance); these participants were excluded from our post-period analysis because they would not have 
any energy savings attributable to the program. 
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Figure 45: SCE CQM Participants by County and Climate Zone

 

Table 7 shows the distribution of business types within the participant population; these 
were determined using a combination of NAICS codes (i.e., industry) and building types 
listed in SCE’s customer database. The retail trade and grocery sectors make up more than 
half of all participants in SCE’s CQM program. The top five sectors are the same as for the 
PG&E CQM and Air Care Plus programs. 
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Table 7: SCE CQM Participants by Business Type 

Business Type 

Relevant 
NAICS 
Codes 

CQM 
Participants 

Retail trade 44****, 45**** 33% 

Grocery 445** 21% 

Office (e.g., insurance, management) 5***** 13% 

Restaurant 722*** 7% 

Education 61**** 7% 

Manufacturing 3***** 5% 

Wholesale trade 42**** 4% 

Health care and social assistance 62*** 4% 

Religious, civic, and professional associations 813*** 2% 

Construction 23**** 2% 

Other - 2% 

 

Segmentation 
For the SCE CQM program, we defined customer segments with a combination of daily 
energy usage (magnitude), normalized load shape (hours of use), and business type. First, 
we assigned customers to one of 20 bins by their average daily energy usage across the 
most recent pre-period year, with the highest energy usage bin containing the fewest 
customers. Next, we used k-means clustering to identify the eight unique clusters shown in 
Figure 46, each containing a subset of customers with similar load shapes during the pre-
period. The U-shaped load group includes 10 buildings that are not on a net energy 
metering (NEM) rate schedule, but have a load shape consistent with interconnected 
generation or storage. Lastly, we used the building type and NAICS codes contained in the 
utility customer information system to create 11 distinct business types based on their 
building type and industry. 
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Figure 46: SCE CQM Load Shape Clusters

 

This segmentation approach defines 235 customer segments and 44 day bins, for a total of 
10,340 distinct customer-day bins.41 

Holdout Validation Tests 
The results of one holdout test are shown in Figure 47, comparing the predicted pre-period 
load shape from the model (red line) to the actual pre-period load shape for the holdout 
sample (blue line). When the model is performing well, the two lines will overlap. The 
holdout test relies exclusively on pre-period data so that any differences between the 
predicted and actual energy usage can be attributed to model error, not to program 
savings. The model predictions track with the average actual load, with an overall 
difference of 1 percent. The predictions are more accurate during the afternoon and 
evening, around the system peak. 

 

41 The 235 customer segments are distinct combinations of 20 energy usage bins, 8 load shape clusters, and 11 
business types. The 44 day bins are comprised of 10 CDD bins, 9 HDD bins, and 2 day types (but not season). 
Not all possible combinations of the customer and day segments were observed in the pre-period data. 
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Figure 47: SCE CQM Holdout Test 

 

As shown in Figure 48, the AMICS model predictions were less accurate for the holdout 
sample during individual seasons, with overestimations of the summer usage from 10:00 
a.m. to 1:00 p.m. and of the winter usage from 5:00 a.m. to 1:00 p.m. Even in the winter, the 
predictions are within 2 percent of the actual energy usage at sites in the holdout sample. 

Figure 48: SCE CQM Holdout Test, by Season 
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Program Energy Savings 
Figure 49 compares the post-period predicted load shape (red) with the actual post-period 
load shape (blue) across all SCE CQM participants in the database with records of HVAC 
maintenance.42 This prediction is based on the pre-period baseline energy consumption 
model and post-period weather data; it represents the expected load shape for these 
customers in absence of the program intervention. The error of each hourly prediction is 
depicted as a 95 percent confidence interval in the shaded area around each estimate. 
Whenever the actual post-period load shape (blue line) falls outside the predicted post-
period load region (red area), this indicates that a statistically significant change was 
observed during that hour. In this case, the actual post-period load shape (blue) falls just 
below the predicted load shape (red) during the afternoon and evening hours, but the 
difference is minor. 

Figure 49: SCE CQM in Post-Period 

 

Figure 50 shows our estimated hourly kWh savings across the entire post-period, with 
error bars depicting 95 percent confidence intervals around each estimate. The SCE CQM 
participants exhibited energy savings during all 24 hours of the day, but these savings 
were only statistically significant during the evening hours of 5:00 p.m. to 7:00 p.m. 

 

42 Some participants did not require any adjustments (i.e., tests revealed that their system did not need any 
maintenance); these participants were excluded from our post-period analysis because they do not have any 
energy savings attributable to the program. 
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Overall, we estimate that the SCE CQM program led to energy savings of 5.03 kWh ± 19.56 
per day (or 0.4% ± 1.5%).  

Figure 50: SCE CQM Estimated Savings 

 

Figure 51 depicts the estimated savings in each of the four seasons. The AMICS model 
found positive and statistically significant energy savings in the spring, with small and 
mostly insignificant savings in the winter.  

Figure 51: SCE CQM Estimated Savings by Season 
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Savings by Segment 
The segmentation in the AMICS model provides a unique opportunity to see the variation 
in program savings by customer segment and weather. 

 

Table 8 shows the AMICS estimate of energy savings by business type among participant 
sites with non-zero ex ante savings that were observed in the post-period. We see a wide 
range of estimated energy savings by kWh and proportion of baseline consumption (%) 
across sectors within each program. This is due in part to differences in HVAC 
maintenance activities, reflected in the ex ante gross savings but also differences in savings 
potential related to the HVAC capacity, controls, and operating schedules across sectors. 
Three business types exhibited negative savings, increasing their energy usage in the post-
period; this will offset some of the positive energy savings realized by the other business 
types when viewed at the program level.	This	information	can	then	be	used	by	program	
implementors	to	target	and	focus	recruitment	efforts	on	the	business	types	with	the	highest	
potential	for	savings	(i.e.,	based	on	estimate	savings	of	prior	participants	rather	than	ex	ante	
assumptions).	Additionally,	this	could	prompt	a	process	evaluation	with	a	focus	on	why	the	
current	offering	is	not	working	well	businesses	in	the	construction,	health	care,	or	
manufacturing	industries.		
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Table 8: SCE CQM Gross Energy Savings by Business Type 

Business Type 
CQM 

Participants 

N Sites 
in 

Post-
Period 

Estimated  
Savings 

Ex Ante 
Savings 

kWh % kWh % 

Retail trade 33% 238 2.8 0.4% 10.88 1.3% 

Office (e.g., insurance, 
management) 13% 67 33.2 2.2% 26.57 2.0% 

Education 7% 38 30.2 2.7% 39.15 3.3% 

Manufacturing 5% 33 -57.0 -1.3% 35.73 0.8% 

Wholesale trade 4% 16 21.3 2.9% 25.08 1.6% 

Restaurant 7% 12 57.4 2.0% 17.15 0.8% 

Health care and social 
assistance 

4% 9 -69.2 -8.9% 21.04 2.8% 

Religious, civic, and 
professional 
associations 

2% 8 17.5 1.8% 37.85 3.7% 

Construction 2% 6 -93.0 -11.1% 13.47 1.7% 

Other 2% 8 29.3 2.7% 27.47 2.7% 

Note: Percentages represent kWh savings as a proportion of baseline kWh consumption. 

Figure 52 shows the average daily savings estimated by the AMICS model by business 
type and cooling load. The rows show customers segmented by business type, and the 
columns show the cooling load by CDD (hottest days on the right). We automatically 
color-coded the cells with the highest kWh savings in dark green and the lowest in dark 
orange (negative savings = increased usage); the yellow cells fall in the middle of this 
spectrum.  

Participants in the health and social assistance industry realized some positive energy 
savings (green) on days with high cooling load (on the right), but those savings were offset 
by negative savings (orange) on days with little to no need for cooling (on the left). 
Participants in the retail trade realized much lower savings (light yellow-green) that were 
stable across days with low, moderate, and high cooling loads. 
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Figure 52: SCE CQM Energy Savings by Business Type and CDD 

 

3.3.3 SCE Commercial Quality Installation  

Program Description 
This application of the AMICS model used a sample of commercial customers that 
participated in SCE’s Commercial Quality Installation (CQI) program. The CQI program 
requires installation of higher efficiency HVAC units in addition to quality installation 
procedures that help ensure that the units are installed and operating in a manner that 
maximizes their efficiency. The AMICS model was used to estimate savings for 
participants relative to a pre-installation baseline, as discussed previously. The sample did 
not include a comparison group of similar HVAC installations, so we were not able to 
parse the estimated savings into the portion attributable to the new efficient HVAC 
equipment versus the quality installation processes.  

Database 
SCE provided Evergreen with AMI whole-building billing data and account characteristics 
for 1,972 distinct commercial and industrial customers that received incentives for 
installation of an efficient HVAC unit by a qualified contractor between February 2014 and 
May 2016. The SCE program data included customer and program participation 
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information such as ex ante gross energy and demand savings, HVAC size (tons), building 
type, business NAICS code, and rate schedule.  

The AMI billing data for this study contained 26 million observations from January 1, 2014 
to September 31, 2016.43  

We applied filters to exclude customers with:  

• No pre-period observations in the billing data (n=353);  
• Net energy metering, such as onsite solar generation (n=94);  
• Average daily use greater than 40,000 kWh (n=13);44 or 
• Extreme changes from the pre- to post-periods of more than 150 percent or less than 

-66 percent (n=172). 

As a result, the AMI analysis was limited to 1,340 customers. As shown in Figure 53, this 
sample covers a wide geographic region, with participants along the coast and in the 
mountainous climate zones. Nearly all of these buildings (99%) were on rate schedules 
with time-of-use and demand charges, meaning their bills are impacted by their energy 
usage (kWh) during peak hours and maximum demand (kW) in addition to their total 
energy usage (kWh) during each billing cycle. Eighteen percent were enrolled in a demand 
response program, with 92 enrolled in a direct load control program that allows SCE to 
cycle their HVAC or other connected equipment to reduce usage on event days. 

 

43 For consistency across customers in the study, all 15-minute interval billing data were aggregated to the 
hourly level. 
44 These very large customers have too much variation in their load shapes, and their inclusion in the model 
would have led to less accurate forecasts for the remaining commercial customers. They should be modeled 
individually. 
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Figure 53: SCE CQI Participants by County and Climate Zone

 

Table 9 shows the distribution of business types within the participant population; these 
were determined using the customer segment listed in SCE’s database. We have provided 
a column with relevant NAICS codes to aid comparisons across programs. Offices, retail, 
and schools comprise half of all participants in SCE’s CQI program.  
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Table 9: SCE CQI Participants by Business Type 

Business Type Relevant NAICS Code 
CQI 

Participants 

Office buildings 5***** 29% 

Retail stores 44****, 45**** 13% 

Other commercial 51****, 71****, 81**** 11% 

Schools 6111** 10% 

Restaurants 722*** 9% 

Other industrial 3***** 7% 

Warehouses 42**** 4% 

Builders 23**** 3% 

Hospitals/medical facilities 62**** 2% 

Colleges & universities 6112**, 6113** 2% 

Food stores & refrigerated warehouses 445*** 2% 

Other - 10% 

 

Segmentation 
For this program, we defined customer segments with a combination of daily energy 
usage (magnitude), normalized load shape (hours of use), and business type. First, we 
assigned customers to one of 25 bins by their average daily energy usage across the most 
recent pre-period year, with the highest energy usage bin containing the fewest customers.  
Next, we used k-means clustering to identify 15 unique clusters, each containing a subset 
of customers with similar load shapes during the pre-period. Figure 54 shows the 14 
clusters with more than one site. Lastly, we used the business segment contained in the 
utility customer information system to create 21 distinct groups describing the primary 
business activity. 
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Figure 54: SCE CQI Load Shape Clusters 

 

This segmentation approach defined 510 customer segments and 45 day bins, for a total of 
22,950 distinct customer-day bins.45 

Holdout Validation Tests 
The results of one holdout test are shown in Figure 55 and Figure 56, comparing the 
predicted pre-period load shape from the model (red line) to the actual pre-period load 
shape for the holdout sample (blue line). When the model is performing well, the two lines 
will overlap. The holdout test relies exclusively on pre-period data so that any differences 
between the predicted and actual energy usage can be attributed to model error, not to 
program savings. The final customer segmentation approach resulted in a model that 
closely matched the holdout sample, with an overall prediction error of only 0.8 percent. 
For the seasonal models, the CQI model prediction error was around 1 percent in three 
seasons, with higher error in the winter months. The differences in prediction error across 
seasons will be evident in the width of our error bounds by season in the post-intervention 
period. 

 

45 The 510 customer segments are distinct combinations of 25 energy usage bins, 15 load shape clusters, and 
21 business types. The 45 day bins are comprised of 10 CDD bins, 9 HDD bins, and 2 day types (but not 
season). Not all possible combinations of the customer and day segments were observed in the pre-period 
data. 
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Figure 55: SCE CQI Holdout Test 

 

Figure 56: SCE CQI Holdout Test, by Season 
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Program Energy Savings 
Figure 57 shows the overall average daily impacts in the post-period. The average daily 
model predicts savings of -0.5 percent of consumption, or an increase of approximately 
11.2 kWh per day on average (4,088 kWh per year).  

Figure 57: SCE CQI in Post-Period 

 

Figure 58 provides the post-period load shapes for the four most common business types. 
Note the variation across groups in total daily kWh energy usage, load shape, and 
reductions in energy usage. The largest savings were observed in retail stores, with 
average savings of 78 kWh per day or 28,434 kWh per year. The relatively high kWh 
savings estimate is reflective of the large retail customers in the CQI sample, which have 
an average annual consumption of 14,964 kWh. The savings estimate on a percentage basis 
(6.2%) appears reasonable given these customers’ sizes.  
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Figure 58: SCE CQI in Post-Period by Business Type

 
 
Figure 59 shows our estimated hourly kWh savings across the entire post-period, with 
error bars depicting 95 percent confidence intervals around each estimate, and Figure 60 
shows the savings broken out by business type. Across all participants, the SCE CQI 
program led to insignificant energy savings during the midday from 9:00 a.m. to 5:00 p.m., 
but these savings were offset by increases in energy usage during the morning and 
evening hours. Overall, we estimate that the SCE CQI program resulted in energy savings 
of -11.19 kWh ± 40.16 per day (or -0.5% ± 1.9%).  

The savings by business type in Figure 60 show large and statistically significant savings 
in retail stores and office buildings. Restaurants and schools have savings during most 
hours of the day, suggesting an improvement in baseline energy usage, but not all of these 
savings were statistically significant. Participants with other business types (e.g., 
industrial, warehouses, hospitals) exhibited a significant increase in energy usage during 
most hours.  
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Figure 59: SCE CQI Estimated Savings

 
 

Figure 60: SCE CQI Estimated Savings by Business Type 

 

* The "Other" category includes industrial, warehouses, builders, hospitals/medical facilities, colleges and 
universities, food stores and refrigerated warehouses, and other business types. 
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Savings by Segment 
Table 10 shows the AMICS estimate of energy savings by business type among 
participating customers that were observed in the post-period. We see a wide range of 
estimated energy savings by kWh and proportion of baseline consumption (%) across 
business types within the SCE CQI program. This is due in part to differences in HVAC 
size, capacity, and efficiency relative to existing equipment, reflected in the ex ante gross 
savings (with inherent assumptions from the underlying workpapers). Five of the business 
types exhibited positive savings, reducing their energy usage after the program 
intervention. These were also the five most common business types within the CQI 
program, with over 100 participants in each. All other business types exhibited negative 
savings, increasing their energy usage in the post-period; this offset most of the positive 
energy savings realized by the other sectors when viewed at the program level. 

Table 10: SCE CQI Gross Energy Savings by Business Type 

Business Type 
CQI 

Participants 

N Sites 
in Post-
Period 

Estimated 
Savings 

Ex Ante 
Savings 

kWh % kWh % 

Office buildings 29% 290 36.4 2.7% 74.8 5.5% 

Retail stores 13% 161 77.9 6.2% 30.9 2.5% 

Schools 10% 129 35.1 2.5% 40.2 2.8% 

Other commercial 11% 127 5.7 0.4% 36.2 2.6% 

Restaurants 9% 110 31.3 3.7% 4.5 0.5% 

Other industrial 7% 51 -45.9 -1.7% 10.3 0.4% 

Warehouses 4% 42 -234 -8.4% 37.1 1.3% 

Hospitals/medical 
facilities 2% 25 -575 -6.7% 44.8 0.5% 

Colleges & universities 2% 23 -218 -5.0% 132 3.0% 

Other 10% 166 -86.9 -2.0% 50.3 1.1% 

Note: Percentages represent kWh savings as a proportion of baseline kWh consumption. 

3.3.4 Metered Commercial HVAC 
In addition to applying the AMICS approach to a variety of commercial programs at a 
whole building level, we also used HVAC sub-metering data to better understand the 
degree to which the AMICS approach is capable of predicting changes in HVAC usage 
and disaggregating HVAC usage from whole building data. As part of Evergreen 
Economics’ analysis of SCE’s Comprehensive Value Chain HVAC (CVC-HVAC) program 
as a High Opportunity Programs or Projects (HOPPs) offering, we demonstrated that the 



 

Evergreen Economics  Page 85 

AMICS model was able to estimate energy savings for individual non-residential sites 
while meeting the precision requirements established for NMEC projects in most cases. In 
addition to whole building data for these sites, we received HVAC sub-metered data for 
seven customers that participated in the SCE Field Data Collection Study. Since these 
seven customers have both whole building and HVAC sub-metered data available, they 
provide a unique opportunity to test how the AMICS model can estimate HVAC loads for 
commercial customers.   

Database 
All seven customers shown in Table 11 completed HVAC upgrade projects incentivized by 
SCE and were part of the Field Data Collection study.46 This study provided a small 
sample of commercial customers with thorough on-site testing and metering of individual 
HVAC units, both before and after system upgrades. For this analysis, we focused 
exclusively on the period prior to the system upgrades. Table 11 summarizes the data we 
were provided with for each site. While we were provided with at least five months of pre-
period whole building AMI data for each customer, only a portion of that time also had 
HVAC sub-metering—usually the summer months. Overall, we were able to analyze at 
least 100 pre-period days for each customer where there were both whole building AMI 
interval data and sub-metered HVAC usage data. 

Table 11: Overview of Field Data Collection 

Customer Business Type 
Pre-period AMI 

Coverage 

HVAC 
Metering 

Data Overlap  

N Days in 
Pre-Period 
with Data 

01 Restaurant <6 months Apr-Aug 2016 107 

02 Restaurant <6 months May-Aug 2016 114 

03 Restaurant <6 months May-Aug 2016 107 

04 Restaurant <6 months Jun-Sept 2016 109 

05 Restaurant <6 months Jun-Sept 2016 105 

06 Office 6-12 months Jun-Oct 2016 124 

07 Office 6-12 months Aug-Dec 2016 110 

 

Note that most of the selected customers have less than six months of pre-period AMI 
energy usage data. Some evaluations require 12 month of pre-period data to ensure that 
model predictions are based on energy usage data that cover the continuum of seasons 

 

46 National Comfort Institute Inc., Energy Solutions, and Solaris Technical LLC conducted this commercial 
quality installation data collection study to support SCE’s program development. 



 

Evergreen Economics  Page 86 

and weather conditions. Additionally, because traditional billing regression only uses 
monthly data, a longer pre-period was needed to maximize the amount of data available 
for the model. With AMI data, however, a pre-period of six months is likely sufficient as 
long as it includes days with significant heating and cooling opportunities. 

AMI Analysis Methods 
As part of Evergreen’s initial proof-of-concept for SCE’s HOPPs CVC-HVAC pilot 
program, our standard AMICS modeling approach was applied to the whole building 
AMI data for the seven participating customers, with several minor program specific 
adjustments to the approach. The HOPPs CVC-HVAC pilot program offers custom HVAC 
retrofit measures with pay-for-performance contractor incentives. In this type of program 
design, it is necessary to estimate the realized savings of each individual participant, 
including some customers with limited pre-period data. Given the uniqueness of 
commercial customers with respect to building characteristics and economic activity, this 
application of the AMICS modeling approach excludes the customer segmentation 
component. Instead, customers are modeled individually. In this model variant, shown in 
Figure 61, the AMICS approach is not defining customer segments, but is modeling each 
individual customer’s interval data on its own, based on characteristics of the days 
observed.  

Figure 61: AMICS Approach 

 

Similar to the approach for other programs, every day of the study period was binned in 
terms of its weather and day type. The weather bins were created by calculating cooling 
degree-hours (CDH) for each hourly observation using a base temperature of 65 degrees 
Fahrenheit, and then taking the average of these hourly values to create a single cooling 
degree-day (CDD) value for each customer on each day (i.e., each “customer-day”) in the 
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study period. These customer-days were assigned to a series of bins, each containing a 
range of five CDDs. This process was repeated to assign days to heating degree-day 
(HDD) bins, again using a base temperature of 65 degrees Fahrenheit. To help control for 
the differences in energy usage across days of the week with the same weather conditions, 
we binned the days by type. Weekends were assigned to day type 1, and weekdays were 
assigned to day type 0. To aid in our ability to make direct comparisons between HVAC 
and whole building data, the day bins from the whole building analysis were used to 
define the day bins for the HVAC data as well. 

Holdout validation was conducted for the whole building model. Figure 62 compares the 
predicted pre-period load shape from the whole building model (red line) to the actual 
pre-period load shape for the holdout (blue line) for a single site and holdout sample. As 
was the case across multiple sites, the AMICS approach was able to effectively model 
whole building data from each site. 

Figure 62: Example Holdout Sample in Pre-Period, Actual vs. Predicted  
Whole Building Usage 

 

Table 12 summarizes the ability of AMICS to model whole building data at each of the 
seven sites for the entire pre-period using all three of the SCE NMEC error threshold 
metrics. The normalized mean bias error (NMBE) measures the average difference 
between the model prediction and actual metered energy usage. NMBE is a directional 
measurement; a negative NMBE indicates that the model underestimated the site’s actual 
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energy usage. The coefficient of variation of the root mean square error, CV(RMSE), 
measures the model’s prediction error across the entire sample and is focused on the 
distance between the actual and predicted energy usage (not the direction).47 When 
provided with all pre-period observations (i.e., no holdout days), our model meets the SCE 
NMEC error thresholds for the majority of sites in the sample.48 

Table 12: Pre-Period Baseline Model Results 

Customer 

AMICS Do Models Meet 
NMEC Criteria? NMBE CV(RMSE) R-Sq 

01 -9.6E-18 12% 81% Yes 

02 -3.9E-17 10% 88% Yes 

03 -7.5E-18 11% 92% Yes 

04 -3.6E-17 10% 65% No, R2<70% 

05 -3.4E-17 9% 55% No, R2<70% 

06 -4.7E-17 17% 92% Yes 

07 1.9E-18 16% 91% Yes 

 

Weather Sensitivity Analysis Methods 
With the same day bins applied to the whole building and HVAC data of each customer, 
we compared the weather-sensitive component of whole building usage and the weather-
sensitive component of HVAC usage under the hypothesis that the two would be closely 
related. We calculated the weather-sensitive component of usage (either whole building or 
HVAC) in two steps: 

1. We estimated the hourly non-weather-sensitive component of usage (baseline) by 
determining average hourly usage on neutral days (CDD bin = 0 and HDD bin = 
0). These values were calculated separately for weekdays and weekends to 
maintain day-type differences.  

 

47 The NMBE can appear near zero when overestimations are consistently balancing out underestimations to 
create an accurate average prediction. The CV(RMSE) does not measure direction (i.e., consistent bias), but 
focuses on the magnitude of the prediction error.  
48 Current SCE NMEC guidelines require NMBE<0.005%, CV(RMSE)<25%, and R-Square>70% for models 
with 12 months of pre-period data. When the models do not meet these error thresholds, further analysis 
and/or customer follow-up is suggested to improve the models prior to estimating energy savings realized 
in the post-period. 
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2. We then subtracted the average hourly baseline usage from the actual usage of 
each hour to determine how much of an hour’s usage was weather sensitive. This 
calculation was completed independently for whole building data, AMICS 
estimates, and the HVAC sub-metered data.  

Figure 63 shows an example from Customer 03 of how weather sensitivity was calculated 
for whole building usage at an individual site on an individual day. The black line 
indicates the average hourly usage across all neutral days in the pre-period as predicted by 
the AMICS model, i.e., baseline usage. The blue line indicates the actual usage at the site 
on a warm day in June 2016. The blue-shaded area is the difference between the actual 
usage and the average usage on all neutral days and is our estimate of weather-sensitive 
usage on this day for this site at the whole building level. As expected, the figure shows 
increased usage during peak cooling hours on this day.   

Figure 63: Example of Weather-Sensitive Whole Building Calculation 
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Figure 64 shows an example of how weather sensitivity was calculated for HVAC usage 
for the same site and the same day as shown in Figure 63. For this figure, the blue line 
indicates the average hourly HVAC usage across all neutral days in the pre-period, and 
the green line indicates the actual HVAC usage at the site on a warm day in June 2016. The 
green-shaded area is the difference between the actual usage and the average usage on all 
neutral days and is our estimate of weather-sensitive HVAC usage on this day for this site. 

This calculation was repeated for every site and for every hour with HVAC data to create 
hourly weather-sensitive estimates. From these estimates, we created site-specific average 
hourly weather-sensitive load shapes. Using NMBE and CV(RMSE), we compared these 
load shapes to evaluate how accurately the weather-sensitive component of whole 
building usage predicted weather-sensitive HVAC usage. 

Figure 64: Example of Weather-Sensitive HVAC Calculation 
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Figure 64 also shows that HVAC usage has a non-zero baseline; that is, even on temperate 
days, the HVAC system is still used. This non-weather-sensitive HVAC usage (non-WS 
HVAC) is critical to this analysis, because it prevents us from being able to directly 
estimate HVAC usage from whole building usage. This is because the model includes the 
HVAC baseline usage in the whole building baseline calculation. For example, there is no 
way of disaggregating the HVAC baseline in Figure 64 from the whole building baseline in 
Figure 63 without HVAC sub-metering because there are no days (regardless of weather) 
that the HVAC is not in use. However, this does not prevent us from evaluating how 
weather-sensitive changes in HVAC usage (WS HVAC) compare to weather-sensitive 
changes in whole building usage.   

Weather Sensitivity Findings 
Given that AMICS was effective at simulating whole building load shapes, the capability 
of the model to account for weather sensitivity can be evaluated with the goal of 
understanding how well the whole building model can account for weather-sensitive 
changes in HVAC usage. The results from this analysis can help determine on a site-by-
site basis the degree to which AMICS is capable of disaggregating HVAC usage from 
whole building data. 

Figure 65 shows an example comparison between weather-sensitive changes in HVAC 
usage and AMICS-predicted weather-sensitive changes in whole building usage for a 
single day. In this figure, the blue line corresponds to the blue shaded area in Figure 64 
and represents the weather-sensitive change in HVAC for Customer 03 on a warm day in 
June 2016. Similar to the calculation in Figure 63, the red line represents the expected 
weather-sensitive change in whole building usage based on AMICS predictions for the 
same day. For this particular day for this particular customer, weather-sensitive changes in 
HVAC energy usage mapped closely with weather-sensitive changes in AMICS predicted 
usage.  
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Figure 65: Example of Weather-Sensitive Comparison on an Individual Day 

 

Figure 66 shows an example, from Customer 03, of how weather-sensitive changes in 
HVAC usage compared to weather-sensitive changes in the AMICS-modeled usage on 
average across the entire period with HVAC data. While weather-sensitive changes in 
modeled whole building usage do not perfectly align with weather-sensitive changes in 
HVAC usage, the general pattern of peak increases in usage during peak cooling hours is 
shared between both datasets. Weather-sensitive changes in whole building usage not 
attributed to weather-sensitive changes in HVAC usage could be attributed to other 
changes in customer usage that are correlated with weather. For example, given that 
Customer 03 is a fast food restaurant, the peak hour increases in weather-sensitive whole 
building usage could be attributed to increased business during those hours on warmer 
days.  
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Figure 66: Example of Weather-Sensitive Comparison on Average Day 

 

 

Table 13 summarizes the ability of the AMICS model to predict weather-sensitive changes 
in HVAC usage across all sites. For these metrics, the weather-sensitive component of 
HVAC usage (actual HVAC usage minus average HVAC usage on neutral days) was 
compared to the weather-sensitive component of the whole building AMICS model 
(modeled usage minus average usage on neutral days). 

Comparing HVAC usage and whole building usage can generally be expected to have a 
higher level of error than when comparing modeled whole building usage against actual 
whole building usage. One reason is that variation in non-HVAC usage (which is not 
being metered independently) may be correlated with weather. This weather-sensitive 
non-HVAC usage (WS non-HVAC) shows up in the weather-sensitive whole building 
estimates, but is not caused by weather-sensitive changes in HVAC usage, leading to error. 
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As a result, the expected error in a successful model may be higher than in a model that 
only uses whole building data. While a successful whole building model is expected to 
have an NMBE of +/-5 percent and a CV(RMSE) of 25 percent, a comparison of weather-
sensitive HVAC usage and weather-sensitive whole building usage will have higher error.  

The predictability of weather-sensitive HVAC usage varied widely between sites. In 
particular, Customer 06 and Customer 07 had very high error, while Customer 01, 
Customer 03, and Customer 05 had relatively low error given the datasets being 
compared. The causes of variation in error between sites, especially the cases of Customer 
06 and Customer 07, will be discussed in more depth later, but outside of those sites, 
changes in HVAC usage were generally predictable from whole building usage, especially 
in terms of kWh. 

Table 13: AMICS Capability of Disaggregating HVAC from Whole Building 

Customer WS HVAC WS AMICS NMBE CV(RMSE) 

01 0.55 0.50 -9% 98% 

02 0.78 0.88 14% 101% 

03 1.16 1.12 -3% 61% 

04 0.53 0.60 13% 63% 

05 0.22 0.22 0% 97% 

06 0.37 0.59 59% 114% 

07 0.30 1.00 239% 526% 

 

As described previously, one possible source of error is changes in whole building usage 
that are correlated with weather but are not caused by changes in HVAC usage. 
Leveraging the whole building usage data, as well as the HVAC sub-metering, we can 
impute these weather-sensitive non-HVAC usage levels on a site-by-site basis. Figure 67 
shows an example of the average hourly usage components for Customer 03. For 
reference, in this figure: 

• WS HVAC (green) corresponds to WS HVAC in Figure 66, 
• Baseline non-HVAC (light blue) corresponds to Baseline in Figure 63, 
• And, Baseline HVAC (dark blue) corresponds to Baseline HVAC in Figure 64. 

The remaining component, WS non-HVAC, is imputed as the total average hourly actual 
usage minus the previous three components. While WS non-HVAC is generally the 
smallest component of usage, its size (especially relative to WS HVAC) can cause errors 
when using whole building data to estimate weather-sensitive changes in HVAC. This is 
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because all weather-sensitive changes in whole building usage are assumed to be caused 
by changes in HVAC, when, in fact, some are not. 

Figure 67: Example of Usage Components 

 

Table 14 summarizes the usage components on an average daily basis at each site. WS 
non-HVAC varied between sites, and the weather-sensitive AMICS estimates tended to 
perform better (especially in terms of NMBE) at sites where WS non-HVAC was small 
relative to WS HVAC. In particular, Customer 07, which performed the worst, had the 
largest average WS non-HVAC value. In fact, based on the available data, weather-
sensitive changes in non-HVAC usage were actually larger than weather-sensitive changes 
in HVAC for Customer 07.  



 

Evergreen Economics  Page 96 

Table 14: Summary of Usage Components 

Customer 
Baseline 

non-HVAC 
Baseline 
HVAC 

WS 
HVAC 

WS 
non-HVAC 

WS non-HVAC as 
% of WS HVAC 

01 9.79 3.06 0.55 0.06 11% 

02 9.25 2.96 0.78 0.26 33% 

03 9.43 2.55 1.16 -0.01 -1% 

04 5.50 1.03 0.53 0.12 23% 

05 6.05 1.41 0.22 0.05 23% 

06 4.17 1.10 0.37 0.28 76% 

07 15.07 1.88 0.30 0.37 123% 

 

Conclusions 
While sub-metered HVAC will always be the most effective measurement of HVAC load, 
we have demonstrated that the AMICS approach can estimate weather-sensitive changes 
in HVAC usage under certain circumstances. For specific customers in this study, like 
Customer 03, the AMICS approach created meaningful baseline usage estimates, from 
which we were able to make relatively accurate predictions of weather-sensitive changes 
in HVAC usage.  

Table 15 summarizes the ability of AMICS to estimate weather-sensitive changes in HVAC 
usage in addition to some key site characteristics. The best predictor of our ability to 
successfully model the impact of weather on HVAC usage was the amount of weather-
sensitive non-HVAC usage at a site. While the most successful sites had a moderate 
amount of weather-sensitive non-HVAC usage, the two sites with the highest model error, 
Customer 06 and Customer 07, had weather-sensitive non-HVAC usage that was nearly as 
great or greater than their weather-sensitive HVAC usage. While both of these sites are 
offices, another factor correlated with weather-sensitive non-HVAC usage was the amount 
of conditioned square feet per HVAC ton at each site. Therefore, a possible predictor of 
weather-sensitive non-HVAC usage (and by extension our ability to predict weather-
sensitive changes in HVAC usage), is the size of business space relative to the size of 
HVAC used to cool that space (i.e., ratio of conditioned square-footage to HVAC tons). 
That is, the amount of weather-sensitive non-HVAC usage that can occur is greater when 
the amount of HVAC is small relative to the floor space of the business.  
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Table 15: Summary of Characteristics and Results 

Customer 
Business 

Type 

HVAC 
Data 

Season 

WS non-
HVAC as % 

of WS 
HVAC 

Sq ft per 
HVAC Ton NMBE CV(RMSE) 

01 Restaurant Summer 11% 90 -9% 98% 

02 Restaurant Summer 33% 140 14% 101% 

03 Restaurant Summer -1% 160 -3% 61% 

04 Restaurant Summer 23% 100 13% 63% 

05 Restaurant Summer 23% 96 0% 97% 

06 Office Summer 76% 210 59% 114% 

07 Office Fall 123% 318 239% 526% 

 

While using the AMICS approach to estimate weather-sensitive changes in HVAC usage 
has been effective in some cases, especially for certain types of commercial sites, further 
research is needed to evaluate the accuracy of these predictions prior to use as a baseline. 
One particular area of research that would improve this approach is developing a better 
understanding of the causes of weather-sensitive changes in non-HVAC usage (WS non-
HVAC). This might include additional study on the load of typical commercial end-uses, 
particularly in office buildings, and how these loads react to changes in weather. 
Generally, a better understanding of the causes of WS non-HVAC and how to predict it 
would make for stronger estimates of weather-sensitive HVAC usage when using whole 
building data.  

Another area for further research is HVAC baseline usage. Our ability to predict total 
HVAC usage from whole building usage was limited by the existence of non-zero baseline 
HVAC usage (non-WS HVAC), where the power draw can not be explained by a need for 
heating or cooling. If additional HVAC submetering data becomes available, we suggest 
that researchers examine the relationship between commercial HVAC load shape and 
weather. Another method for estimating HVAC baseline usage would be to combine 
whole building AMI data with data associated with the HVAC controls such as HVAC 
runtime, temperature set points, and indoor temperature readings. For example, the 
difference in whole building usage between when indoor air temperature is at a relative 
minimum compared to when indoor air temperature is at a relative maximum could be 
used to predict the minimum/baseline amount of HVAC usage. This information, 
combined with estimates of weather-sensitive changes in HVAC (as discussed in this 
section), could be used to create total HVAC usage estimates without any HVAC sub-
metering. While theoretically possible, further study comparing actual HVAC baseline 
usage and predicted HVAC baseline usage would be required.  
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4 Conclusions 
This research has demonstrated that the AMICS model performs well when predicting 
hourly energy usage across the population of participants in the residential and 
commercial programs we analyzed. While the AMICS model was not always able to detect 
statistically significant savings at the program level, our customer segmentation was able 
to identify a subset of customers (by baseline usage or industry) with significant savings 
that were hidden in aggregate, suggesting a need for targeting. 

Below, we present the high level conclusions as they relate to the key research objectives, 
which are provided in bold. 

1. Refine the residential billing analysis methods using data from the same HVAC 
programs we examined in Phase I. 

 
In Phase I, we segmented customers by their baseline electricity consumption after 
controlling for weather using a simple fixed effects model. In Phase II, we refined our 
approach, segmenting customers with a combination of their average daily usage (kWh) 
and load shape (hours of use). We used k-means clustering to identify groups of customers 
with similar load shapes automatically from the AMI data, rather than relying on 
customer characteristics that are not typically tracked (or not regularly updated) in the 
utility databases. Customers with similar energy usage on the average day can have 
drastically different load shapes. The load shape clusters help account for the remaining 
differences in occupant schedules, energy-intensive equipment, peak demand hours, and 
other factors.  

The holdout tests for both residential HVAC programs (PG&E's Quality Maintenance and 
SCE's Quality Installation programs) demonstrate that the AMICS model is able to 
produce accurate estimates of load shapes for participants of residential HVAC programs, 
accounting for the variation in load shapes across all four seasons. This confirms findings 
from the Phase I research showing that the AMICS model performs well with residential 
customers. 

The AMICS model detected statistically significant savings for SCE's QI program, 
consistent with our expectations by season and time-of-day for improved air conditioning 
efficiency. PG&E's QM program had a larger population of nearly 30,000 participants but 
very small ex ante savings (<5%) that can be difficult to detect with billing analysis. The 
QM program savings estimated by our model were not statistically significant during most 
hours, despite the tight error bounds around our predictions. However, the AMICS 
segmentation revealed a wide variation in energy savings across customer segments and 
weather conditions, with more substantial energy savings being realized by high energy 
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users on days with low to moderate cooling loads. This information could be used by the 
IOUs to target similar customers for future program participation. 

Key Findings: 

• The AMICS model is able to produce accurate load shape predictions for residential 
HVAC participants. 

• The estimated savings for SCE's QI program were consistent with our expectations 
by season and time-of-day for improved air conditioning efficiency. 

• The AMICS segmentation of PG&E's QM program revealed that participants who 
were high energy users in the baseline period realized significant energy savings 
from the program intervention.  

 

2. Explore using the AMICS model to estimate savings for the Home Energy 
Reports (HERs) program—including the control group of non-participant 
residential customers. 

 
The holdout test provided evidence that the AMICS model is able to accurately predict the 
hourly load of both the treatment and control groups within 1 percent across all four 
seasons.  

Overall, we estimated that the average energy savings attributable to the Gamma Wave of 
PG&E’s Home Energy Reports was 0.12 kWh per day, or 0.6 percent. This estimate is 
lower than prior evaluations, which attributed 1.2 to 1.9 percent savings to the HERs 
program in the Gamma Wave; though the difference was not statistically significant. The 
AMICS model contributes three key benefits for the HERs program: 

1. Hourly intervals. The existing evaluations relied on energy usage data in monthly 
or daily intervals. We used hourly intervals to provide more information about the 
hours when savings occur. Smaller time intervals can provide more information, 
but this comes at the cost of increasing random noise, for which the model must 
account.  

2. Segmentation improves matching. In some cases, randomized group assignment is 
not sufficient to produce balanced samples with similar energy usage patterns in 
the baseline period. Our customer segmentation in the baseline period identifies 
and groups customers with similar load shapes, seasonality, and climate prior to 
any change in the program treatment. Performing difference-of-differences 
calculations within each customer segment improves the validity of our 
comparisons, focusing on the impact of the program treatment. 
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3. Ease of distributional impact analysis. The AMICS modeling approach creates 
separate model predictions and estimated post-period changes (i.e., energy savings) 
for each customer segment simultaneously. We do not simply provide the average 
treatment effect; instead, we expose the variation in program impacts across 
participants associated with key differences in the characteristics and energy usage 
patterns of these customers in the baseline period.  

 

Key Findings: 

 
• The AMICS model was able produce accurate load shape predictions for 

households in the HERs treatment and control groups. 
• We found evidence of energy savings realized by the HERs treatment group above 

and beyond the natural changes observed in the control group, but these savings 
were not statistically significant at the program level. 

 

3. Adapt the AMICS model as a potential tool to evaluate commercial and industrial 
HVAC programs, and assess the AMICS model’s potential capabilities for 
analyzing High Opportunity Programs and Projects, in regard to implementation 
of Assembly Bill (AB) 802. 

 
When constructing customer segments for commercial and industrial customers, we 
discovered that it was necessary to consider the business type, not just energy usage. For 
instance, a large office building and elementary school may have similar energy usage 
(kWh), operating hours, and peak energy usage; however, they will still differ in their 
seasonality and distribution of energy usage by end use (e.g., HVAC, cooking). Further 
categorizing customers by their NAICS code, building type, or utility segment improved 
the prediction error for the holdout sample and led to tighter error bounds around our 
estimates. 

The holdout tests for each program demonstrated that the AMICS model is able to 
produce reasonable estimates of load shapes for participants of commercial HVAC 
programs, with predictions within 1 percent of the actual usage of the holdout sample. The 
AMICS model detected statistically significant savings for PG&E's Air Care Plus program, 
consistent with our expectations by season and time-of-day for improved air conditioning 
efficiency. The Commercial Quality Maintenance and Quality Installation program savings 
estimated by our model were not statistically significant during most hours at the program 
level, despite the tight error bounds around our predictions.  
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In each of the commercial programs, the AMICS segmentation revealed a wide variation in 
energy savings across customer segments. We found consistent energy savings attributed 
to HVAC interventions for participants in the retail sector, but these were offset (at least in 
part) by increases in energy usage attributed to participants in the manufacturing and 
health sectors. These findings suggest that the commercial HVAC programs could benefit 
from improved targeting. 

 

Key Findings: 

 
• The AMICS model was able produce accurate load shape predictions for 

participants in each of the commercial HVAC programs. 
• All of the commercial HVAC programs could benefit from improved targeting by 

business type. 
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5 Appendix 

5.1 Non-Routine Events 
During the analysis, we identified some commercial customers with substantial changes in 
energy usage that occurred outside the program retrofit period. In some cases, these could 
be explained by tenant turnover (in buildings with leased space), or on-site construction or 
other major renovations. These types of non-routine events (NREs) can obscure energy 
savings derived from a meter-based approach if these events are not identified, confirmed, 
and measured (or estimated), and if model predictions are not adjusted in the baseline 
period.  

Motivated (in part) by the introduction of site-level normalized metered energy 
consumption (NMEC) programs, the evaluation community is currently working on 
developing rigorous and transparent approaches for NRE detection and adjustment. The 
following figures provide some examples of daily kWh energy usage in individual 
buildings that were screened during the creation of the participant pool for the billing 
analysis. In each figure, the red lines indicate the first and last program intervention date 
on record. The days to the left of the red line are the pre-period, between the lines is the 
installation/intervention period (if applicable), and days to the right are the post-period.  

Figure 68 shows a well-behaved building, with consistent patterns in energy usage across 
days and fluctuations across months that appear consistent with seasonality during the 
baseline period, a short term increase in energy usage during the program intervention, 
and then some minor but fairly consistent changes in the patterns of energy usage 
maintained throughout the post-period. 

Figure 68: Example of Daily Energy Consumption Over Time with a Seasonal Baseline 
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In Figure 69, we see a customer with relatively stable energy consumption that shifts to a 
different tier of energy usage every five months or so. A model relying on this full year of 
pre-period energy usage would provide an unrealistically low prediction for this building 
in the post-period, likely underestimating energy savings attributable to the program. This 
pattern has appeared in large office and industrial buildings with multiple tenants, where 
not all units are consistently occupied. This building’s inconsistent energy usage would 
pose unique challenges for pre-post billing analysis (thereby disqualifying them from an 
NMEC program) unless additional data could be collected to control for changes in 
building occupancy and operating hours.  

Figure 69: Example of Daily Energy Consumption Over Time With Tiered Baseline 

 

In Figure 70, we see a consistent range of kWh energy usage for one and a half years in the 
pre-period. However, a few months before the program intervention, there is a dramatic 
drop in energy usage that is maintained throughout the post-period. It appears that there 
were additional changes to the building operation prior to program participation. In this 
case, a model of the pre-period would provide an unrealistically high prediction for this 
building in the post-period, likely overestimating energy savings, if additional data are not 
collected. Unlike the previous example, this type of issue cannot be avoided with pre-
period screening of program applicants (i.e., analysis to confirm consistency in energy 
savings prior to participation); ex post data collection would be necessary to identify, 
explain, and then correct for this event.  
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Figure 70: Example of Daily Energy Consumption Over Time With Sudden Drop 

 

In this last example, Figure 71, we see a dramatic increase in energy usage. It is likely that 
this building was newly constructed or not fully occupied until after the program 
intervention date.  

Figure 71: Example of Daily Energy Consumption Over Time With Increase 
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Even if the cause of inconsistent energy usage could be determined from the energy usage 
data alone, adjusting the model predictions to account for these changes in individual sites 
was not within the scope of this study. We applied filters to exclude customers with 
extreme changes from the pre- to post-period. Additional research is needed to develop 
algorithms for consistent NRE detection and adjustment. 

5.2 Related AMICS Publications  
This section provides a brief summary of additional research, program evaluations, and 
conference proceedings that have been published in the past few years related to the 
development and applications of the AMICS approach. 

5.2.1 AMI Billing Regression Study (AMI Phase I) 
Report prepared for Southern California Edison on behalf of SCE, PG&E, SDG&E, and 
SoCalGas on February 23, 2016. Calmac study ID: SCE0383.01.49  

Southern California Edison (on behalf of the four California investor-owned utilities 
[IOUs]) hired Evergreen Economics to conduct a study of how traditional billing 
regression analysis tools could be adapted for use with advanced metering infrastructure 
(AMI) data. Correctly understanding and leveraging the great wealth of information 
provided by AMI data (in addition to developing methods for systematically processing 
very large amounts of customer billing data) can revolutionize how energy efficiency 
programs are evaluated. 

This study presented a new approach—the AMI Customer Segmentation (AMICS) 
model—that allows savings estimates to be tailored more closely to individual customer 
characteristics. This is accomplished by first grouping customer consumption data into 
different categories based on energy use and weather conditions. Separate billing 
regression models (patterned after the random coefficients model specification) are then 
estimated for each usage/weather category, which allows for separate load shape 
predictions for very specific customer types. 

In this study, the AMICS model specification was tested using data from two HVAC 
efficiency programs in California: Southern California Edison’s HVAC Quality Installation 
(QI) program and Pacific Gas and Electric’s HVAC Quality Maintenance (QM) program. 
Both of these programs had samples of over 1,000 customers and involved analyzing AMI 
billing data in 1-hour increments covering multiple years. 

 

49 http://calmac.org/publications/AMI_Report_Volume_1_FINAL.pdf 
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Using the AMI data from both programs, average daily load shapes were calculated for 
specific day types (weekday, weekend, seasonal) and used to estimate energy savings. 
When estimated load shapes were compared against a holdout sample of customers, the 
AMICS model performed extremely well; load shape predictions were within 1 percent of 
the actual load shapes for the holdout sample. Energy savings estimates for these 
programs ranged from 4 percent to 7 percent of annual energy use for the QM and QI 
programs respectively, which was consistent with the original savings expectations for 
these programs. Most of the savings occurred during peak hours and in summer months 
(as would be expected), which provided additional support for the model specification. 

The AMICS modeling approach was also used to estimate the HVAC load using the 
Residential Building Stock Assessment Metering (RBSAM) dataset, as this was the only 
dataset available that contained both whole house and HVAC metered data. There was a 
small sample of homes (n=61 for homes with central heating or cooling) within the 
RBSAM that could be used to test how well the model could predict just the HVAC end 
use. Using this sample, the AMICS prediction was within about 1 percent of actual HVAC 
load on a daily basis. 

In addition to producing accurate baseline models and impact estimates, the automated 
categorization and AMICS modeling processes developed by Evergreen allow for separate 
savings estimates and load shapes to be developed easily for a variety of different 
situations (e.g., time of day, day types, and seasons), rather than providing a simple 
average annual savings estimate. The AMICS model also provides an opportunity to 
develop customer-specific predictions of energy use and potential savings associated with 
various efficiency programs, thus empowering utilities to target the most beneficial 
programs to each customer. 

5.2.2 A Smart Approach to Analyzing Smart Meter Data 
Paper presented at the 2016 American Council for an Energy-Efficient Economy (ACEEE) 
Summer Study on Energy Efficiency in Buildings in Pacific Grove, CA.50  

The wealth of information contained within AMI data offers great promise to utilities in 
designing and understanding the impacts of energy efficiency and demand-side 
management programs. At the same time, fully capturing the information contained 
within AMI data is challenging due to the sheer volume of data. 

In this paper, we discussed some of the methods we employed for a recently completed 
research project for the California IOUs in which we employed a random coefficients 
model to estimate more than 1,000 unique load shapes, each representing one of 20 

 

50 https://aceee.org/files/proceedings/2016/data/papers/12_626.pdf 
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different home-bins on one of more than 50 different combinations of cooling degree-days 
(CDD) and heating degree-days (HDD). Unlike standard methods of regression analysis, 
which fit a single line through a scatter of data, the random coefficients model fits a unique 
regression line to each load shape while simultaneously accounting for correlations in 
energy use across all load shapes. 

We began this paper by discussing the abundance of data generated by AMI—are all these 
data too much of a good thing? We then briefly discussed the fixed-effects model for 
estimating a billing regression and then presented the random coefficient model. We 
concluded with a discussion of potential applications for the random coefficient model 
with respect to AMI data. 

5.2.3 Random Walk to Savings: A New Modeling Approach Using a 
Random Coefficients Model and AMI Data 

Paper presented at the 2016 International Energy Policy & Programme Evaluation 
Conference (IEPPEC) in Amsterdam, Netherlands.51  

This paper presented a new energy savings estimation approach, one that provides 
accurate impact estimates by taking full advantage of hourly AMI data. This approach 
differs from traditional methods in that it automatically develops a large number of 
customer-specific regressions covering a wider range of customer types, weather 
conditions, and time periods. The approach uses a type of hierarchical linear model—the 
random coefficients model—that allows savings estimates to be tailored more closely to 
individual customer characteristics. This is accomplished by first grouping customer 
consumption data into different categories based on energy use and weather conditions. 
Separate models are then estimated for each usage/weather category, which allows for 
separate load shape predictions for very specific customer types.  

The random coefficients model specification was tested using data from two HVAC 
efficiency programs in California. Using participant and AMI data from both of these 
programs, average daily load shapes were calculated for specific day types (weekday, 
weekend, seasonal) and used to estimate program impacts. When estimated load shapes 
were compared against a holdout sample of customers, the random coefficients model 
performed extremely well; load shape estimates were within 1 percent of the holdout 
sample. Energy savings estimates for these programs ranged from 4 to 7 percent of annual 
energy use, which was consistent with expectations. Besides producing accurate impact 
estimates, the automated categorization and modeling processes allow for separate 
savings estimates and load shapes to be developed easily for a variety of situations. 

 

51 https://www.iepec.org/wp-content/uploads/2018/04/Paper-Grover.pdf 
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5.2.4 Take It From the Top! An Innovative Approach to Residential and 
Commercial Program Savings Estimation Using AMI Data 

Paper presented at the 2017 International Energy Program Evaluation Conference (IEPEC) 
in Baltimore, MD.52  

This paper presented a new energy savings estimation approach—referred to as the AMI 
Customer Segmentation (AMICS) model—that provides accurate impact estimates by 
taking full advantage of hourly AMI data. This approach differs from more traditional 
methods in that it automatically develops a large number of customer-specific regressions 
covering a wider range of customer types, weather conditions and time periods. The 
approach uses a type of hierarchical linear model—the random coefficients model—that 
allows savings estimates to be tailored more closely to individual customer characteristics. 
This is accomplished by first grouping customer consumption data into different 
categories based on energy use and weather conditions. Separate models are then 
estimated for each usage/weather category, which allows for separate load shape 
predictions for very specific customer types.  

The AMICS model specification was tested using data from both residential and 
commercial HVAC efficiency programs in California. Using participant and AMI data 
from both of these programs, average daily load shapes were calculated for specific day 
types (weekday, weekend, seasonal) and used to estimate program impacts. When 
estimated load shapes were compared against a holdout sample of customers, the random 
coefficients model performed extremely well; load shape estimates were within 1 percent 
of the holdout sample. Besides producing accurate estimates of energy use, the automated 
categorization and modeling processes allow for separate savings estimates and load 
shapes to be developed easily for a variety of situations. 

5.2.5 Taking Control: Using AMI Data to Estimate Impacts from Peer 
Comparison Programs  

Poster presented at the 2017 International Energy Program Evaluation Conference 
(IEPEC) in Baltimore, MD.53  

Peer comparison programs that utilize a randomly selected control group of customers are 
a popular way for achieving savings, with impact estimates typically ranging between 1 to 
3 percent of annual usage. This poster presented results from a new AMI customer 

 

52 https://www.iepec.org/wp-content/uploads/2018/02/2017paper_grover_cornwell_monohon_helvoigt-
1.pdf 
53 https://www.iepec.org/wp-content/uploads/2017/08/Cornwell_IEPEC2017_Poster.pdf 
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segmentation (AMICS) modeling approach that can easily provide more granular program 
savings estimates than the traditional fixed effects model.  

The AMICS model process starts with automated customer segmentation, grouping 
customers by their total annual energy consumption, load shape (i.e. hours of use), and the 
weather conditions they experience. These groupings remove a substantial amount of 
uncertainty from the model by reducing the variation in energy usage across customers. 
Separate models are then simultaneously estimated for each usage/weather category, 
producing separate predictions for each. 

The AMICS modeling approach was previously used to estimate impacts from two 
residential HVAC programs. In these earlier studies, the model generated load shapes for 
over 1,000 different combinations of customer types and weather conditions. When 
estimated load shapes were compared against a holdout sample of customers, the model 
performed extremely well; hourly energy load estimates were within 1 percent of the 
actual load for the holdout sample.      

Given the promising results from the earlier study, the random coefficients model presents 
an exciting opportunity for estimating energy savings for a peer comparison program. To 
test this, the model is being used to estimate impacts for customers who began receiving 
home energy reports from Pacific Gas and Electric in late 2011. The AMI data contains 
over 3.5 billion hourly observations of treatment and control customers from 2010-2013. 
Our analysis starts with the customer segmentation process to group customers (both 
treatment and control) with similar energy usage. Then, the model simultaneously 
estimates thousands of load shapes, one for each usage/weather category. We then use the 
control group to calculate the difference-in-differences for each category.  

This poster was of interest to researchers wishing to use AMI data to estimate savings for a 
peer comparison program, as well as those seeking to understand the underlying customer 
segments that are the largest contributors to overall program savings. 

5.2.6 Cultural Factors in Energy Use Patterns of Multifamily Tenants: 
EPIC AMI and Load Shape Development 

Report prepared for the California Energy Commission in February 2018 by TRC 
Engineers. Evergreen Economics acted as the interval data analyst for this study under 
contract with Pacific Gas and Electric.54  

This project used the AMICS model to predict load shapes and estimate energy savings 
from hourly interval energy usage data of each tenant residing in a building that 

 

54 https://ww2.energy.ca.gov/2018publications/CEC-500-2018-004/CEC-500-2018-004.pdf 
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participated in PG&E’s Multifamily Upgrade program, funded by California’s Electric 
Program Investment Charge (EPIC). For this study, the model provided valuable insights 
into the characteristics of customers and days that drive program savings, including 
additional analysis with survey data to identify demographic and cultural attributes that 
are strong predictors of energy usage.  

More traditional regression models will focus on the average energy usage and average 
program impact across all customers in the program. One major benefit of the AMICS 
model comes from the fact that customers are only modeled with other members of their 
customer segment. The midday peak users have a separate model and program savings 
estimate from the evening peak users. The evening peak users experienced greater savings 
on hotter days whereas the afternoon peak users actually increased their usage on the 
hottest days. 

5.2.7 AMI Analysis of Site Level Commercial HVAC Savings  
Report prepared for Southern California Edison on July 19, 2018. It was developed as part 
of SCE’s Emerging Technologies Program, under internal project number ET17SCE1130.  

The goal of the study was to demonstrate that the AMICS modeling approach is able to 
quantify interval energy savings for individual non-residential sites and is capable of 
meeting the requirements of normalized metered energy consumption (NMEC) analysis. 

In the case of programs like SCE’s HOPPs CVC-HVAC program, billing analysis must 
provide savings estimates for each individual participant. Given the small number of 
diverse commercial customers expected to participate in this program, we believed it 
would be unlikely that we could construct meaningful customer segments to consistently 
meet the NMEC error thresholds. Instead, we assigned each customer to their own bin, 
effectively constructing separate models for each individual commercial customer. In this 
variation of the AMICS approach, we were no longer creating customer segments, but the 
segmentation of days (via weather conditions and day type) was still required.  

A key benefit of the AMICS model is avoiding over-reliance on the average day. Models 
like Temperature and Time of Week (TTOW) essentially estimate the average load shape 
and then make a series of adjustments to that prediction depending on how the actual 
weather conditions differ from this average. The AMICS approach uses segmentation to 
produce a portfolio of load shapes and then compares each day in the post-period against 
similar days in the pre-period. 
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Table 16: Comparison of the AMICS and TTOW Models 

 AMICS TTOW 

Developer Evergreen Economics Lawrence Berkeley National 
Laboratory  

Prediction interval Hourly or 15-minute Hourly or 15-minute 

Temperature 
dependence 

Non-linear. Portfolio of predicted 
load shapes, one for each set of 
distinct weather conditions (combo 
of CDD and HDD). 

Piecewise linear. Coefficients capture 
the average incremental energy usage 
for a series of component 
temperatures. Estimated separately 
for occupied vs. unoccupied periods. 

Time dependence Time-of-day adjustments. Estimated 
separately for weekdays and 
weekends.  

Time of week adjustments. 

For each… Customer segment or individual Individual 

NOTE: Small modifications to each method could bring the two closer into alignment, but we chose to keep them 
distinct to emphasize the current design and relative strength of each. 

Our cross validation exercise (i.e., pre-period holdout tests) did not find any significant 
differences in the prediction error between these two modeling approaches. We believe 
that the AMICS and TTOW approaches are both well suited for AMI analysis of residential 
and commercial customers, and choosing one model over the other will not significantly 
affect the analytical results. 

5.2.8 M&V 2.0: Leveraging Machine Learning to Improve Energy Savings 
Estimates 

Paper presented at the 2018 American Council for an Energy Efficient Economy (ACEEE) 
Summer Study on Energy Efficiency in Buildings in Pacific Grove, CA.55  

Access to advanced metering infrastructure (AMI) data has given rise to many 
opportunities to improve upon the way in which the energy efficiency industry 
understands end-use customers, measure energy savings and inform estimates of energy 
savings potential. These emerging methods promise much more reliable savings estimates 
and predictions at much lower cost.  

This paper describes how AMI data have been used to predict usage patterns for customer 
and weather segments, based on innovative modeling efforts. The study team developed a 

 

55 https://aceee.org/files/proceedings/2018/node_modules/pdfjs-dist-viewer-
min/build/minified/web/viewer.html?file=../../../../../assets/attachments/0194_0286_000152.pdf 
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new approach—the AMI Customer Segmentation (AMICS) model—that reveals the 
variability in energy savings across customer groups and weather conditions. A key step 
in this modeling approach is using machine-learning algorithms to identify similar load 
shapes and segment the AMI data into thousands of distinct bins. Each bin contains 
customers with similar energy usage patterns on days with similar characteristics. 
Separate billing regression models are then estimated for each customer/weather segment, 
creating thousands of distinct load shape predictions.  

The paper also describes new efforts to incorporate new data—residential end use and 
circuit-level interval data collected as part of two residential monitoring studies—along 
with more granular 15-minute AMI data to further refine the AMICS model to more 
effectively utilize AMI data to estimate energy efficiency program savings. 

This paper will be useful for energy efficiency professionals who are interested in 
understanding the potential of AMI data to improve upon the ability to understand energy 
savings opportunities, with more reliability and much lower cost than traditional methods. 

5.2.9 SCE Smart Thermostat Impact Analysis  
Final report prepared for Southern California Edison on December 7, 2018.  

SCE contracted with Evergreen Economics in 2018 to estimate the energy savings of the 
smart (communicating) thermostats installed in residential single-family homes, relative to 
existing conditions, likely manual or programmable thermostats.  

This study used a convenience sample of customers who enrolled in SCE’s Rush Hour 
Rewards (RHR) demand response program as of July 2018.56 This demand response 
program offers customers incentives to purchase a qualifying energy–efficient smart 
thermostat that enables them to reduce their energy usage during peak demand events, in 
exchange for ongoing bill credits. Consequently, the RHR participants are all residential 
customers with smart thermostats that SCE had already identified in its service territory, 
but they do not necessarily represent the broader population of SCE customers with smart 
thermostats. 

For this study, we conducted a two-pronged modeling approach to billing analysis that 
was designed to make the most of the available data while still producing seasonal smart 
thermostat energy savings estimates (i.e., daily kWh savings). In both models, we used a 
comparison group of future RHR program participants to help control for any natural 
changes in energy consumption over the study period that should not be attributed to the 

 

56 This program is now referred to as the Smart Energy Program (SEP). 
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smart thermostats. We identified and excluded RHR demand response event days to avoid 
double counting savings caused by event participation. 

In the first model, we estimated smart thermostat impacts based on daily kWh energy 
usage data and a fixed effects billing regression. Next, we used the larger AMI billing 
database with hourly interval kWh energy usage to estimate savings using the AMICS 
model.  

Both the daily kWh fixed-effects regression and hourly interval AMICS models found 
statistically significant increases in average energy use that we attribute to the installation 
of smart thermostats by RHR participants. However, the AMICS analysis by customer 
segment revealed a high variation in energy savings across households. Customers with 
low energy usage (kWh) in the pre-installation period substantially increased their energy 
usage after installing the smart thermostat; these offset the energy savings achieved by 
more moderate energy users—leading to an overall increase, or lack of savings. 

5.2.10 EE Savings from Optimized Connected Thermostats  
Final report prepared for Emerging Products (EP) group at Southern California Edison on 
December 10, 2018. It was developed as part of SCE’s Emerging Technologies Program, 
under internal project number ET17SCE8010.  

The manufacturer administered the optimization algorithm to a randomly selected group 
of customers in SCE’s service territory who already have a connected thermostat. Each 
customer in the treatment group received a message on their thermostat prompting them 
to opt into the project, allowing the manufacturer’s algorithm to adjust their temperature 
set points and thereby reduce their home’s cooling load. The manufacturer also 
maintained a control group in the service territory that was not given an option to 
participate. This control group made it possible to estimate the incremental savings from 
the messaging treatment and set point changes, over the existing conditions of having a 
connected smart thermostat. 

SCE contracted with Evergreen Economics to conduct an independent validation of the 
manufacturer’s calculation of the energy savings attributable to the optimization 
implemented in 2018.  

Evergreen used the AMICS model to estimate program impacts on whole home AMI 
interval energy use for a sample of participants that could be identified through a web 
survey. These savings estimates were then compared to estimates of the project’s impact 
on actual HVAC runtimes, following the analysis methods suggested by the thermostat 
manufacturer. The kWh and percent energy savings varied across each of these methods, 
but most suggested that there were energy savings attributable to the optimization project. 
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The differences between the estimates were not statistically significant, due at least in part 
to the small sample size.  

5.2.11 Predictions with Restrictions: C&I Metered Energy Consumption 
Paper presented at the 2019 International Energy Program Evaluation Conference (IEPEC) 
in Denver, CO.57 

This paper presents the results of a case study that compares and contrasts the Advanced 
Metering Infrastructure Customer Segmentation (AMICS) and Temperature and Time of 
Week (TTOW) models to estimate daily electricity load shapes for a sample of 10 
businesses that completed an HVAC retrofit project between 2015 and 2017. This sample 
covers a wide range of business types, operating schedules, and variability in load shapes. 
Both the AMICS and TTOW models were designed for the purpose of using AMI interval 
data to predict whole building hourly or sub-hourly energy usage, while accounting for 
the impacts of outdoor temperatures and weekly operating schedules. To assess the 
relative accuracy of these two modeling approaches, we conducted a cross validation 
using a series of randomized pre-period holdout tests for each site in our sample.  

This paper builds on existing research (AMI load shape analysis and prediction error 
diagnostics) and offers new insights for the next generation of programs. This paper will 
be of interest to evaluators, policymakers, and program implementers who are choosing 
between multiple industry-accepted methods for estimating savings for individual 
buildings and developing new evaluation policies to realize the potential normalized 
metered energy consumption (NMEC) benefits. The NMEC measurement and verification 
approach offers the opportunity for program implementers to gain more real-time realized 
savings feedback.  

5.2.12 When Are Smart Thermostats a Smart Investment? 
Paper presented at the 2019 International Energy Program Evaluation Conference (IEPEC) 
in Denver, CO. 58  

This paper presents the results of two separate studies estimating the energy efficiency 
and load impacts of smart thermostats in Southern Californian homes. These two studies 
provide a unique and robust exploration into the variation in energy savings across 
customer segments. Our findings suggest a need for targeting and education to increase 
energy savings and improve the cost-effectiveness of smart thermostat programs. The 
results and recommendations will be valuable for a wide audience, as the potential for 

 

57 https://www.iepec.org/2019_proceedings/index.html#/paper/event-data/046-pdf 
58 https://www.iepec.org/2019_proceedings/index.html#/paper/event-data/118-pdf 
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smart devices is increasingly of interest for utilities to enhance program offerings and 
optimize customer experience.  

The first study focuses on 26,000 customers who received incentives for a smart thermostat 
that enabled them to participate in demand response events. We excluded event days to 
focus on the energy efficiency of these new smart thermostats relative to existing 
conditions. The second study estimated the impact of a temperature set point adjustment 
algorithm offered to around 63,000 connected smart thermostats across the utility's service 
territory. The algorithm reduces energy usage by making small improvements to 
thermostat settings, thereby reducing HVAC runtimes. The analysis was comprised of a 
simple fixed effects regression and a more complex AMICS model with hourly interval 
kWh, both using comparison groups to control for any natural changes that should not be 
attributed to the smart thermostats.  

5.2.13 SCE NMEC Pre-Qualification Pilot Feasibility Study 
Final report prepared for Emerging Products (EP) group at Southern California Edison on 
December 31, 2019. It was developed as part of SCE’s Emerging Technologies Program, 
under internal project number ET19SCE7010. 

SCE contracted with Evergreen Economics to conduct AMI data analysis to determine if a 
streamlined normalized metered energy consumption (NMEC) approach might be feasible 
to estimate energy savings for multiple business branch locations across a single business 
entity.  

In this initial proof-of-concept study, Evergreen utilized a modified AMICS modeling 
approach and pre-screening algorithm to develop baseline models of energy consumption 
for three commercial chains, including two grocery chains and one retail chain, with 39 
proposed participants. We utilized all current NMEC requirements and guidelines for 
assessing model fit. We also tested whether a matched comparison group could be 
extracted from the remaining branches (i.e., non-participants) from these three chains to 
estimate net savings in the post-period. Since the pilot has not begun implementation, this 
study did not cover performance payment calculations or savings claim estimates. 

The individual baseline models met all of the NMEC model fit criteria for the vast majority 
of participant sites (n=38/39).59 The one site with a failed individual model had a 
significant change in its energy consumption during the baseline period, which was 
identified during our pre-screening for non-routine events. These events will require a 
follow-up discussion with the customer to explain the event, and then adjust the baseline 

 

59 These NMEC model fit criteria are based on the current SCE site-level NMEC procedures manual and CPUC draft rulebook for 
population-level NMEC: CV(RMSE)<25%, NMBE<0.005%, FSU<25% at 90% confidence with bias correction, and preferably R-
square>0.7. 
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model prior to program intervention. The pooled and segmented baseline models of both 
grocery chains met all of the NMEC model fit criteria, but the retail chain did not.  

Conclusions and Recommendations: 

• Pre-Screening – Identify concurrent program participation and any non-routine 
events in the baseline year of energy consumption. Additional data collection will 
be required to produce accurate savings estimates.  

• Comparison Group – While a matched comparison group of non-participant 
branches is feasible, this will require a much larger sample or synthetic comparison 
customers to ensure a match for every participant branch. 

• Baseline Models – Individual baseline models consistently provide the most 
accurate predictions. Pooled and segmented models may be considered for 
populations that are relatively homogenous, such as grocery chains. 

 

 


