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1. Introduction 
This white paper reviews the conceptual underpinnings, analytic methods, and results of Top-
Down (T-D) approaches to estimating the impacts of energy-efficiency programs, and explores 
their usefulness in addressing energy-efficiency policy issues in California. T-D methods use 
macro-level data (aggregated to the sector or geographic area) from energy use indicators to 
estimate energy savings.  

Rationale 
Energy savings and the cost-effectiveness of demand-side management (DSM) initiatives in 
general—and energy-efficiency programs in particular—have traditionally been evaluated using 
a broad range of analytic approaches based on engineering, statistics, market research, or 
combinations of these. Regardless of their field of origin and despite the diversity of methods 
used, these approaches are similar in one essential respect: they are structured according to a 
bottom-up (B-U) approach. As the term suggests, the B-U approach treats individual energy-
efficiency measures, end uses, or programs as the primary units of analysis, and involves 
estimating savings from individual measures or programs, and aggregating results to produce 
estimates of system-wide load impacts.  

The B-U approach has become the utility industry standard for measurement and verification of 
energy-efficiency program impacts, and is widely used in nearly all jurisdictions of the United 
States. This approach, however, does not have a unified methodology. Rather, it uses a 
multidisciplinary approach, relying on disparate analytic techniques to address specific 
evaluation issues, such as verification of gross savings, net-to-gross calculations, and attribution 
of savings impacts to utility programs.  

Despite its history and broad appeal, the B-U approach has four general shortcomings.  

1. First, it requires extensive primary data collection, and is therefore time and resource 
intensive.  

2. Second, it may result in overstating savings since it fails to properly account for possible 
technical interactions among measures and programs—a particularly critical issue in 
large portfolios.  

3. Third, in many cases, its application fails to properly account for confounding factors, 
such as rebound effects and self-selection.  

4. Fourth, the B-U approach has inconsistent treatments or definitions of baseline, both 
across B-U studies and over time, and has failed to adequately account for measure 
retention and savings persistence.   

Broadly speaking, there are two alternatives to the conventional B-U approach: 1) hybrid 
methods, combining features of the T-D and B-U approaches, and 2) T-D methods relying on 
macro-economic models of energy demand. We began research for this white paper by 
thoroughly examining a hybrid method using a quasi-experimental research design, which is 
widely used for estimating program-level impacts of energy-efficiency programs. The method 
involved a comparison of consumption for participants (treatment group) and a comparable 
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sample of non-participants (comparison group) before and after a programmatic intervention to 
measure the program’s net savings.  

We evaluated the possibility of extending this general method to measure savings at the 
aggregate, portfolio level. By relying on pooled cross-sectional, time-series consumption records 
for participants and non-participants in a utility’s programs over an extended period, net 
portfolio-level savings could be estimated at the utility level. The main advantage of this method 
is its low cost, both in terms of data requirements and computation. Further analysis, however, 
revealed several weaknesses of this approach in three critical respects:  

1. For utilities with large portfolios and multiple programs being operated over a long 
period of time, such as with California’s investor-owned utilities (IOUs), it would be 
difficult to employ this method because of the unavailability of customer data to properly 
assign customers to the treatment and comparison groups.  

2. The research design does not allow for proper evaluation of the impacts of upstream 
programs, in which participants cannot be readily identified.  

3. The research design fails to effectively account for the potential impacts of self-selection 
bias, and thus overstates the impacts. 

In light of these considerations, during its 2010–2012 evaluation, measurement, and verification 
(EM&V) decision, the California Public Utilities Commission (CPUC) directed the Energy 
Division (ED) to explore, assess, and test the viability of using alternative T-D approaches that 
use aggregate consumption data to measure reductions in energy consumption due to the various 
energy-efficiency programs and efforts in California.1 The CPUC’s decision was also partly 
motivated by their interest in developing robust methods to assess the progress of achieving 
carbon emission reductions resulting from the energy-efficiency requirement of the state 
Assembly Bill 32, and the CPUC’s adoption of the California Energy Efficiency Strategic Plan, 
which is intended to set utility programs on a course towards market transformation. 

Objectives 
The CPUC has expressed interest in considering a full range of T-D evaluation methodologies, 
including, but not limited to: econometric and other forms of time series analysis; cross-sectional 
studies; panel studies; case study approaches; or “hybrid” combinations of B-U and T-D 
methods. These approaches should provide a reasonably accurate and reliable means of meeting 
three key objectives:  

1. Estimation of energy savings attributable to IOU programs. Under the existing Risk 
Reward Incentive Mechanism (RRIM), IOUs can earn financial rewards or incur 
penalties for meeting or failing to meet energy-savings goals established by the state. 
Because RRIM financial rewards and penalties can potentially be large, the CPUC 
requires that IOU program savings be estimated and attributed as effectively as possible. 
Presently, IOU program savings are verified from the bottom-up on the basis of a large 
number of program evaluations, a lengthy and costly process. The CPUC is interested in 

                                                 
1  California Public Utilities Commission. Decision on Evaluation, Measurement, and Verification of California 

Energy Efficiency Programs. Decision 10-10-033. October 28, 2010. 
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knowing whether T-D evaluation methods can supplement or substitute existing methods, 
possibly reducing evaluation costs and time. 

2. Assessment of the state’s progress toward achieving its greenhouse gas reduction 
goals. State Assembly Bill 32 requires California to reduce its greenhouse gas emissions 
to year 1990 levels by year 2020. An integral component of the state’s plan for achieving 
this goal is to reduce electricity and gas consumption in the retail sector. T-D methods 
could be used in assessing the state’s progress towards this goal. Such progress would be 
measured in terms of the market-gross savings of electricity and gas consumption. 

3. Forecasting energy-efficiency programs, codes and standards, and naturally occurring 
savings for use in developing long-term forecasts of state electricity demand. The 
California Energy Commission (CEC) is responsible for forecasting the state’s electricity 
demand and ensuring its generation resources are adequate to meet future demand. In 
2003, the state declared energy efficiency as a “resource of first choice,” meaning that 
energy-efficiency investments will continue to grow. Demand forecasters must 
incorporate energy-efficiency growth into their forecasts, but few reliable, historical 
savings data are available on which to base the development of these future forecasts.  
T-D methods may help the CEC incorporate more accurate estimates of utility program 
savings into its forecasts. 

Research Activities 
For this white paper, Cadmus undertook several research activities. We reviewed T-D evaluation 
literature, which focuses on estimating utility program savings. We identified data sources, 
modeling and estimation approaches, key identifying assumptions, and important results. 
Chapter 2 presents our literature review findings.  

We also evaluated T-D methods in consideration of their potential application to California 
policy. In Chapter 3, we describe the data requirements, applicability to different retail energy 
sectors in the state (e.g., residential, commercial), reliability of savings estimates, and potential 
policy applications. We close Chapter 3 with recommendations for potential T-D method 
applications in California.  

In Chapter 4, we propose a follow-on study to estimate market gross savings in California using 
T-D methods. We describe data collection and preparation, model specification and estimation, 
and estimation of market gross savings.    

Summary of Findings 
There has been considerable interest over the past two decades in T-D approaches that are based 
on macro-economic energy demand models to measure the impacts of energy-efficiency and 
conservation programs, resulting in a significant body of research. This literature suggests that 
the T-D approach offers an appealing, low-cost alternative to the B-U approach. In addition, our 
main findings were:  

• T-D evaluations have modest data requirements, and can be implemented inexpensively. 

• T-D evaluations employ similar conceptual frameworks, data, and estimation approaches, 
which facilitates the ability to compare results between studies. 
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• Assumptions necessary for attributing savings to utility programs are strong, difficult to 
verify, and, in many instances, unlikely to be satisfied.  

• Although the studies use similar data, model specifications, and estimation strategies, 
their results diverge significantly.  

• The estimation of market gross savings poses some unique challenges related to naturally 
occurring and codes and standards savings. 

These findings lead to the following observations: 

• Limitations notwithstanding, T-D methods provide a potentially useful means of 
estimating utility program energy savings. 

• Use of common data, model specifications, and estimation methods facilitates comparing 
results among studies. 

• Our findings raise doubts about T-D methods’ reliability for evaluating utility programs 
due to a lack of agreement among studies regarding estimated savings and cost-
effectiveness, and the strong assumptions required to identify utility program savings. 
Researchers should carefully examine assumptions required to estimate savings. 

Our main findings regarding assessment of the applicability of T-D evaluation to California 
include: 

• Most data required for T-D evaluation in California are free and publicly available. 

• Assumptions necessary to identify and estimate utility program savings may be satisfied, 
with the most likely results in the industrial sector, where codes and standards are not an 
issue.  

• The uncertainty of T-D savings estimates can be described statistically, which is not true 
for the B-U approach. However, savings based on T-D approaches will likely be 
estimated imprecisely, limiting their potential policy applications. 

From these findings, we draw the following conclusions: 

• Implementing T-D savings evaluation in California would be inexpensive, especially 
compared to costs of estimating savings from the bottom up.  

• T-D evaluation of utility savings can be reliably applied to the industrial sector. Concerns 
arise regarding the application of T-D methods to estimating utility savings in the 
residential and commercial sectors, due to the confounding impacts of codes and 
standards. Researchers should invest effort in developing reliable indicators of codes and 
standards savings for T-D models.  

• Uncertainty about utility program savings from T-D evaluations can be incorporated into 
state forecasts of long-term demand. 

• T-D approaches have important limitations, affecting their usefulness in certain policy 
areas. California policymakers should be aware of these limitations before applying 
results from T-D evaluation.  
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Based on our conclusions about the applicability of T-D methods to California policy, we offer 
the following recommendations:  

• California should pursue T-D evaluation methods as a means of estimating historical 
energy savings for incorporation into CEC forecasts of long-term demand.  

• California should be cautious about solely relying on T-D evaluation methods in 
attribution of energy savings to utility programs due to the imprecision of savings 
estimates; however, methods could be inexpensively used in conjunction with B-U 
methods to verify savings.  

• California should continue researching the use of T-D methods in estimating market 
gross savings for tracking the state’s progress in meeting its greenhouse gas reduction 
goals.  

Research Proposal 
Chapter 4 of this white paper presents a proposal for estimating market gross savings in 
California from the top-down. Based on our literature review and assessment of California’s 
needs, we conclude that additional research on estimating market gross savings would have the 
greatest benefit to the state.  

Our proposal describes a research plan, including data collection, and a methodology for 
estimating market gross savings. We also provide a budget, project timeline, and staffing plan. 
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2. Literature Review 

Introduction 
Over the last two decades, academics and policymakers have expressed growing interest in the 
use of T-D methods. Research in this area has been largely directed towards estimation of utility-
sponsored energy-efficiency program savings. Little effort has been focused on estimating 
market-gross savings using T-D methods.  

We begin this chapter by defining T-D evaluation methods and exploring their applications in 
estimating utility programs and market gross savings. We then look more closely at T-D model 
specifications and different energy use and energy-efficiency indicators. We also review 
assumptions necessary for identifying utility program savings impacts. Finally, we review 
findings from a number of papers using T-D methods.  

Description of T-D Methods 
T-D methods use macro-level data (aggregated to the sector and/or geographic area) on energy 
use indicators to estimate energy savings. These data contrast with those from customer, end use, 
or measure levels, which are commonly employed in B-U energy consumption studies. Energy-
use indicators measure energy intensity through energy consumption per specific units (e.g., 
capita, square foot) or unit of output (e.g., industrial value added, gross domestic product) over a 
specified period of time (typically a year).  

Applications of T-D Methods 
In theory, T-D approaches can be used to estimate market gross savings or utility program 
savings. Market gross energy savings tend to be long lasting and result from a range of causes, 
including utility or public-funded energy-efficiency programs, government policies (such as 
building codes and appliance standards), and naturally occurring market adoption. In contrast, 
temporary reductions in energy use from changes in weather, income, energy prices, and other 
structural economic variables, such as in industry composition, generally do not qualify as 
market gross savings.  

Utility program energy savings result from utility programmatic interventions. They exclude 
savings from freeriders (program participants who would have installed program measures in a 
program’s absence) and include spillover savings (resulting from the adoption of non-program 
measures by program participant and nonparticipants). Interest in T-D methods has grown from 
policymakers’ and researchers’ concerns that B-U evaluations have not properly accounted for 
the effects of freeridership, spillover, and savings overlap. Such oversight has likely resulted in 
overstated utility savings (Arimura, Newell, and Palmer, 2009; Loughran and Kulick, 2004; 
Rivers and Jaccard, 2011).  

We could not identify any researchers using T-D methods to estimate market gross savings. 
Researchers have focused on utility energy-efficiency programs for two reasons. First, from 
certain viewpoints, the measurement of savings impacts and cost-effectiveness of utility energy-
efficiency programs have proved controversial for some time (Joskow and Marron, 1992; Nadel 
and Geller, 1996), and most efforts have been to measuring these impacts. However, we expect 
interest in T-D methods for market gross savings to grow as states establish greenhouse gas 
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reduction goals and seek cost-effective methods for measuring their progress towards achieving 
those goals. Second, as we discuss, T-D methods are significantly more challenging to use for 
estimating market gross savings than to use for estimating utility savings.  

Given the literature’s emphasis on measuring utility savings, our literature review focuses on 
applying T-D methods in this area; however, many findings about T-D methods for estimating 
utility program savings can also be used to estimate market gross savings.  

T-D Methods for Estimating Energy Savings 
T-D studies use regression analyses of aggregate energy use data to estimate energy savings. 
Regression analysis offers a straightforward method for estimating the impacts of utility 
programs on different energy-use measures; changes in these measures reflect the influences of a 
large number of differing factors. Regression analysis allows for proper attribution of energy-use 
changes resulting from utility programs, codes and standards, and naturally occurring savings by 
controlling for a large number of different factors affecting energy use.  

T-D Estimation of Utility Program Savings 
T-D studies typically rely on energy use data and its drivers for a large number of geographic 
units (e.g., utility service territories, states, or provinces) over time. Most of these data can be 
acquired free-of-charge from the U.S. Department of Energy’s Energy Information 
Administration. Energy use is modeled as a function of energy-efficiency investments and other 
time-varying factors affecting use, including price, weather, and income.  

Typically, the model produces estimates using panel regression techniques, such as fixed-effects 
or first-differencing. Our research identified seven studies using T-D methods to estimate utility 
program savings (Arimura, Newell, and Palmer, 2009; Auffhammer, Blumstein, and Fowlie, 
2008; Horowitz, 2004; Horowitz, 2007; Loughran and Kulick, 2004; Parfomak and Lave, 1996; 
Rivers and Jaccard, 2011). Table 2.1 summarizes the basic characteristics and primary findings 
from these studies. 

 



California Public Utility Commission August 12, 2011 

The Cadmus Group, Inc. / Energy Services 9 

Table 2.1 Summary of T-D Utility Program Energy Savings Papers 

Study Sector 
Geographic Area 
and Years Energy Use Indicator Energy Efficiency Main Findings 

Parfomak and 
Lave (1996) 

Commercial and 
industrial 

39 U.S. utility service 
territories in 10 states, 
1970–1993 

Energy sales to commercial 
and industrial customers 

Utility reported savings at 
meter 

Average realization rate for commercial DSM 
programs of 99%. 

Horowitz (2004) Commercial 42 U.S. states,1989–
2001 

Commercial retail electricity 
sales/commercial sector 
income 

DSM savings of 
statistically adjusted 
shipments of electronic 
ballasts 

Average realization rate for commercial DSM 
programs of 54%. 

Loughran and 
Kulick (2004) 

All sectors 324 U.S. utilities, 1989–
1999 

Retail energy sales DSM expenditures DSM savings between 0.3% and 0.4% of 
electricity consumption. 

Horowitz (2007) Residential, 
commercial, and 
industrial 

24 U.S. states, 1989–
2001 

Commercial sector retail 
electricity sales to state 
service sector income 

Strong versus weak 
commitment 

DSM resulting in reductions in electricity 
intensity of 4.4% in the residential sector, 
8.1% in the commercial sector, and 11.8% in 
the industrial sector. 

Auffhammer, 
Blumstein, and 
Fowlie (2008) 

All sectors 324 U.S. utilities, 1989–
1999 

Retail energy sales DSM expenditures DSM savings between 0.5% and 2.8% of 
electricity consumption. 

Arimura, Newell, 
and Palmer (2009) 

All sectors 513 U.S. utilities, 1989–
2006 

Retail energy sales DSM expenditures per 
customer 

DSM savings of 1.1% of electricity 
consumption at a cost to utilities of 
$0.064/kWh. 

Rivers and Jaccard 
(2011) 

All sectors 10 Canadian provinces, 
1990–2005 

Retail energy sales per capita DSM expenditures per 
capita 

DSM savings are statistically zero. Cost-
effectiveness may be as high as $2/kWh 
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To illustrate a typical approach, the following model examines energy use in a sector (e.g., 
residential, commercial) for a large number of geographic areas (e.g., utility service territories), 
i=1, 2,..., N, over a number of years (t=1, 2, ..., T).  

Let us suppose that annual energy use per consumption unit (e.g., capita) in area ‘i’ in year ‘t’ 
can be modeled as follows: 

eit = Wit’γ + Σj=0
JδjDit-j + λi + μit

 (Equation 2.1) 

Where: 

eit  = energy use indicator, typically expressed in natural logarithmic form.  

Wit = vector of time-varying characteristics affecting energy use in geographic 
area ‘i’ during period ‘t,’ including weather, income, electricity, and 
other energy source prices.  

γ = vector of coefficients indicating the relationship between energy use and 
the characteristics of Wit. 

Dit-j = measure of energy-efficiency program expenditures in the period ‘t’ 
through ‘j.’ One or more lags control for the impacts of past investments 
on current energy use. The coefficient δj, where j=1 to J, shows the 
impacts of contemporaneous and past utility energy-efficiency 
investments on energy use.  

λi = geographic unit of analysis fixed effect, capturing the impacts of energy 
consumption characteristics that do not vary over time.  

μit = the model’s random error term, reflecting unobservable influences on 
energy use in area ‘i’ during year ‘t.’  

In addition to the right-hand side variables listed above, many T-D studies include one or more 
lagged values of the dependent variable, a time trend, or time period fixed effects. The lagged 
values for the dependent variable capture the partial adjustment of electricity demand to changes 
in prices, preferences, or time-varying factors (Auffhammer, Blumstein, and Fowlie, 2008; 
Horowitz, 2004; Loughran and Kulick, 2004; Rivers and Jaccard, 2011). As electricity demand 
derives from the use of long-lived appliances and equipment, adjustments lag as equipment and 
appliances are replaced gradually. Houthakker, Verlager, and Sheehan (1974) show how auto-
regressive model specifications can be derived from a flow-adjustment demand model.  

Time trend variables or time periods capture omitted time-varying covariates of consumption, 
such as changes in attitudes and in codes and standards (Loughran and Kulick, 2004, p. 38). 

The ‘δ’ coefficient provides the main objects of interest in Equation 2.1. If Dit-j represents per 
capita DSM expenditures, the coefficient δit-j represents energy savings in period ‘t’ per dollar of 
expenditures in period ‘t’ through ‘j.’ If Dit-j represents per capita ex ante energy savings, δit-j 
represents the percentage of ex ante energy savings in period ‘t’ through ‘j’ that are realized in 
period ‘t.’  
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Market Gross Savings 
Market gross savings result from utility energy-efficiency programs, codes and standards, and 
naturally occurring adoption, and result in long-lasting savings, not short-term reductions in 
consumption from changes in weather, income, or energy prices. Natural adoption provides an 
important element of market gross savings, and depends on energy prices, environmental 
attitudes, energy-efficiency awareness, and the normal replacement of equipment and appliances 
at the end of their life cycles.  

In theory, market gross savings can be estimated as the difference between reference 
(counterfactual) consumption (consumption in the absence of natural adoption, utility programs, 
and state codes and standards) and observed consumption. Such estimation could be 
accomplished via several steps: 

1. Model energy consumption as a function of energy prices, income, weather, energy-
efficiency investments, codes and standards, and, possibly, a polynomial time trend to 
obtain consumption elasticity. 

2. Estimate consumption in the absence of naturally occurring measures, codes and 
standards, and utility programs, using the model coefficients. This would require 
choosing appropriate counterfactual values for prices, energy-efficiency programs, and 
codes and standards. A plausible counterfactual would use previous year energy prices, 
previous codes and standards, and zero energy-efficiency expenditures.  

3. Estimate market gross savings as the difference between observed consumption and 
consumption without utility energy-efficiency programs, changes in codes and standards, 
or naturally occurring adoption.  

Figure 2.1 illustrates the calculation of market gross savings. The blue line shows observed 
consumption and the green line shows consumption in the absence of market gross savings, 
which we calculated by setting market gross savings variables to zero or their previous period 
levels. The difference between the lines provides market gross savings. 
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Figure 2.1. Graphical Illustration of Estimating Market Gross Savings 

 
 
Estimating market gross savings, however, may be difficult. First, price changes elicit responses 
along two margins: one permanent and qualifying as energy savings, and the other temporary 
and not qualifying. Increases in energy prices can lead to the adoption of energy-efficiency 
measures, which permanently reduce energy use and qualify as savings (the extensive margin). 
Price increases also reduce the usage intensity of existing appliances and equipment, which is 
temporary (the intensive margin) and does not qualify as energy savings. As the price variable 
coefficient captures both effects, estimates of savings impacts based on the coefficient would 
reflect long-term, short-term, and temporary consumption changes. Naturally occurring savings 
should capture only those savings from long-term responses to energy price changes. Dynamic 
demand models that enable the estimation of short- and long-term consumption elasticities are a 
potential solution to this problem (Houthakker, Verlager, and Sheehan, 1974; Bernstein and 
Griffin, 2005; Rivers and Jaccard, 2011).  

The second way that estimating market gross savings may be difficult is that estimating savings 
from codes and standards has proved difficult in T-D models (Arimura, Newell, and Palmer, 
2009; Aroonruengsawat, Auffhammer, and Sanstad, 2009). Specifically, it has been difficult to 
develop reliable indicators of energy savings from codes and standards for inclusion in the 
models as independent variables. We discuss this issue in our proposal in Chapter 4.     

The third reason that estimating market gross savings may be difficult is that the polynomial time 
trend can be used to capture energy savings from naturally occurring adoption related to new 
attitudes and awareness. The time trend, however, may also include the effects of factors 
unrelated to energy efficiency and codes and standards, such as increasing adoption of energy-
using consumer products (e.g., DVR players, cable boxes, and game consoles).  

Energy Use Indicators 
In Equation 2.1, the dependent variable eit provides the energy use indicator, showing energy use 
per consumption or per unit of output (typically for one sector, which are residential, 
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commercial, industrial, and agricultural, but sometimes for all sectors). Studying energy use in 
all sectors offers the advantage of comprehensiveness: it provides a complete picture of the 
relationships between energy consumption and energy efficiency in retail energy markets. Its 
disadvantage lies in the fact that the relationships between certain model variables may not apply 
across all sectors. For example, energy efficiency may be much more effective in some sectors 
than others, which is why researchers have adopted both approaches (as was shown in  
Table 2.1).  

Many T-D studies express energy use relative to a consumption unit, such as population, or 
relative to a unit of output, such as gross state product (GSP). Energy-use indicators per 
consumption unit include energy use per capita in the residential sector or energy use per square 
foot of floor space in the commercial sector.  

Normalizing energy this way offers two advantages. First, it controls for changes in energy use 
on the extensive margin: that is, changes in population or floor space. These changes contribute 
to energy use and must be accounted for, but they do not represent the primary objects of interest 
in the estimation. Second, expressing energy use on a per-unit basis facilitates the interpretation 
of results; it is much easier to understand the significance of energy reductions when results are 
expressed this way. 

Several studies express energy use per unit of output, or energy use intensities. Examples include 
energy use per dollar of GDP or GSP, or energy use per unit of industrial output value added. 
Horowitz (2004) uses energy use per unit of income in the commercial and industrial sectors as 
an energy-use indicator. The advantage of this approach is that it account for changes in the 
sectors’ size and its effect on energy consumption. Thus, it effectively controls for changes in 
energy use resulting from structural changes in the economy, such as relocations of industries. A 
disadvantage of energy use intensities is that they remain sensitive to the composition of energy-
using firms in the industry. Energy intensive firms may account for a smaller share of value 
added over time, decreasing the sector’s energy intensity for reasons unrelated to efficiency.  

Normalizing energy use per unit of consumption or output also exacts costs in terms of the 
generality of the assumed relationship between energy use and the normalizing variable. 
Specifically, in a double-log model (such as that estimated by Arimura, Newell, and Palmer, 
2009; Auffhammer, Blumstein, and Fowlie, 2008; Loughran and Kulick, 2004; and others), 
normalization imposes a unitary elasticity restriction. That is, the model assumes that a 1 percent 
increase in the normalizing variable results in a 1 percent increase in the energy-use indicator.2 
For example, using population as the normalizing variable implies that a 1 percent increase in 
population results in a 1 percent increase in energy use.  

This assumption may be appropriate in some cases, but it is rarely stated or tested, and would 
result in biased DSM impact estimates if, for example, economies of scale in electricity 

                                                 
2  Suppose log total energy consumption in a state sector is: ln(Yt)= a + b1 ln(DSMt) + b2ln(Pop)t + cln(Xt) + εt 
 Subtracting b2ln(Pop)t

 from both sides results in: ln(Yt) - b2ln(Pop)t = a + b1 ln(DSMt) + cln(Xt) + εt 

 Most papers estimate: ln(Yt/Popt) = a + b1 ln(DSMt) + cln(Xt) + εt 
 This formulation implies that b2=1, (i.e., that sales are unit-elastic in the population). 
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consumption occurred.3 In this case, it would be more appropriate to estimate relationships 
between energy use and energy efficiency directly by using total energy use as the dependent 
variable and a polynomial in population on the right-hand side of the estimating equation. 

Energy-Efficiency Indicators 
T-D studies have also used different indicators of energy-efficiency investments, including 
energy-efficiency expenditures, ex ante energy savings, and market transformation variables. For 
three reasons, most have used expenditures per unit of consumption or output (e.g., Auffhammer, 
Blumstein, and Fowlie, 2008; Rivers and Jaccard, 2011).  

1. First, coefficients on expenditures have a simple cost-effectiveness interpretation. In log-
linear models, the interpretation is the percent change in savings per dollar. In double-log 
models, interpretation is the elasticity of savings with respect to expenditures. Given the 
intense interest in the cost-effectiveness of utility energy-efficiency programs, many 
researchers naturally chose to quantify energy-efficiency investments in terms of 
expenditures.  

2. Second, utility annual DSM expenditures are readily available on the U.S. Department of 
Energy’s Energy Information Agency (EIA) Form 861, which has reported data on DSM 
expenditures for most of the nation’s utilities since 1989.  

3. Third, many studies rely on expenditures since they can be represented consistently over 
time. With proper adjustments for differences in price, energy-efficiency expenditures 
can be compared over time and across geographic areas.  

Nevertheless, while expenditure data can be a useful source of information about utility 
investments in energy efficiency, caution should be exercised in interpreting estimated utility 
program cost-effectiveness. For example, the model returns an estimate of average cost-
effectiveness across utilities, ignoring potential differences in utilities’ efficiency in operating 
their programs. Utility programs’ cost-effectiveness also may change over time. Utilities 
typically invest in the most cost-effective options first. As time passes, however, fewer cost-
effective opportunities are available, and program cost-effectiveness diminishes (Arimura, 
Newell, and Palmer, 2009). Most T-D studies do not specify models that capture differences 
between utility programs’ maturities and life-cycles.  

Another limitation in using expenditures is, as noted, some data are not disaggregated by sector 
or spending on energy-efficiency or demand-response programs (Horowitz, 2004; Rivers and 
Jaccard, 2011). As T-D studies seek to measure energy savings or energy-efficiency program 
cost-effectiveness, energy-efficiency expenditures offer the proper measure. When including 
demand-response spending on expenditures, energy-efficiency expenditures may be measured 
with error, and cost-effectiveness and program savings estimates may be biased downward.  

                                                 
3  For example, total energy consumption may grow by less than 1 percent for every 1 percent increase in 

population, if the population increase is mostly in dense urban areas with electric space conditioning. Large 
commercial and multifamily residential buildings in dense urban areas would achieve the same cooling with 
total lower energy use than the same population in less dense urban, rural, and suburban areas.  
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An alternative measure of utility energy-efficiency investments uses utility ex ante savings 
estimates. Typically, these are based on engineering studies (Parfomak and Lave, 1996, adopt 
this approach). As with energy-efficiency expenditures, the coefficient on the ex ante savings 
model has a straightforward interpretation: it is the average realization rate for ex ante utility 
program saving. This coefficient, multiplied by ex ante savings, produces an estimate of actual 
savings. A difficulty this approach presents, however, is that ex ante savings may not be 
estimated consistently over time or across utilities (Parfomak and Lave, 1996). This biases the 
realization rate estimate. Horowitz (2004) observes that the quality of utility savings data 
declined during deregulation and industry restructuring in the late 1990s, as DSM fell out of 
favor. 

Horowitz (2004) employs creative approaches to quantifying energy-efficiency and market 
transformation investments. In his analysis of the commercial sector, he uses statistically-
adjusted U.S. Census data on electronic fluorescent lighting ballast shipments to approximate 
utility spending on market transformation programs.4 Also, in analyzing electricity savings in the 
residential, commercial, and industrial sectors, Horowitz (2007) uses EIA data on utility-reported 
energy savings to classify states by their commitment to DSM programs.  

Assumptions Necessary to Identify Utility Program Savings Impacts in T-D 
Models  
As noted, most T-D analyses specify consumption as a function of utility program savings, other 
time-varying factors (such as income and energy prices), and geographic area fixed effects. The 
model estimates use panel regression methods. Three assumptions are necessary to identify the 
impact of utility energy-efficiency programs on consumption: 

1. Energy-efficiency expenditures must vary sufficiently over time;  

2. Energy-efficiency expenditure variations must be exogenous to consumption; and 

3. The model must not omit any variables correlated with energy-efficiency expenditures 
and consumption. 

Violation of these assumptions results in biased estimates of utility program savings, 
undermining the results’ internal validity. We discuss each of these assumptions below, along 
with the potential threats resulting from their violation. 

Sufficient Variation in Energy-Efficiency Investments  
In T-D evaluations, identifying utility program savings requires variations over time in energy-
efficiency expenditures within utility service territories, states, or provinces. The variation must 
be sufficiently large to estimate energy-efficiency programs’ savings impacts.  

Fortunately, from the standpoint of evaluation, significant variations in DSM spending have 
occurred over time. Much of this variation in spending has resulted from the restructuring of 
electricity markets in the late 1990s and 2000s, leading to a significant decrease in energy-
efficiency interest and spending by utilities (Arimura, Newell, and Palmer, 2009, pp. 6-7; Rivers 

                                                 
4  Horowitz’ critical assumption is that electronic ballast shipments from market transformation programs closely 

track other market transformation activities.  
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and Jaccard, 2011, pp. 3-4). Figure 2.2 shows variations in real total DSM spending and total 
retail electricity sales in the United States between 1989 and 2008. 

Figure 2.2. Real DSM Expenditures by U.S. Utilities, 1989–2008 

 
  

Exogeneity of Variation in Energy-Efficiency Investments 
Variation in energy-efficiency spending must be exogenous with consumption. In the context of 
Equation 2.1, it must be E[μitDit | Wit, λi] = 0. Violation of this condition results in biased 
estimates of utility program impacts.  

Such violations could arise for two reasons. First, selection in utilities energy-efficiency program 
offerings may not be random. For example, if only utilities that expect to save the most energy 
offer energy-efficiency programs, savings impacts would be biased upward. It could be argued 
that spending is partially or fully exogenous because, in many cases, utilities’ energy-saving 
targets are mandated by regulation or legislation. However, selection may also occur at the 
regulatory level, whereby states with expectations of high or cost-effective energy savings 
mandate the most ambitious savings goals. Selection bias could also occur if utilities invest in 
energy efficiency only during periods when investments are expected to save a great deal of 
energy. In this case, savings impacts would also be biased upward.  

The second reason energy-efficiency spending may not be exogenous to consumption is that 
attitudes towards energy efficiency and their impacts on energy consumption vary over time 
(resulting from environmental concerns). The correlation between energy consumption and 
energy-efficiency spending from unobserved attitudes about the environment would bias impacts 
of energy savings downward. 

In theory, instrumental variables can be used to control for the endogeneity of consumption and 
energy-efficiency spending. To do this, analysts would need to find variables correlated with 
energy-efficiency expenditures, but not with consumption after controlling for other variables. 
However, in practice, it has proved difficult to find variables satisfying the necessary exclusion 
requirements (Rivers and Jaccard, 2011).  
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In practice, most studies have simply ignored the potential for endogenous energy-efficiency 
expenditures or assumed they were exogenous. In some circumstances, it may be possible to 
argue that DSM expenditures are effectively exogenous, and research design is quasi-
experimental. For example, River and Jaccard (2011, p. 23) argue that energy-efficiency 
expenditures are largely driven by regulatory requirements and influential personalities, 
minimizing the extent of endogeneity.  

Omitted Variables 
Another condition necessary for identifying savings impacts of utility energy-efficiency 
programs is accounting for all variables correlated with energy-efficiency spending and 
consumption. If this condition does not hold, the condition E[μitDit | Wit, λi] = 0 will be violated, 
and savings estimates will be biased.  

In Equation 2.1, two types of omitted variables may potentially be omitted: those varying over 
time and those not varying. The cross-sectional fixed effects control for any correlation between 
utility or state time-invariant characteristics affecting consumption and energy-efficiency 
spending. These fixed effects could control for differences in attitudes and beliefs, home sizes 
and characteristics, and industrial composition.  

The vector ‘W’ controls for observable factors that change over time. The most important such 
factors are income, weather, and prices. However, data on all time-varying factors affecting 
consumption may not be available. If missing variables do not correlate with energy-efficiency 
expenditures, the omission will be inconsequential. If missing variables are correlated with 
consumption, however, omitted variable bias will arise.  

In most T-D studies, several factors correlated with energy-efficiency expenditures are ignored. 
First, there are state energy codes and equipment standards, which, as explained earlier, can 
substitute for utility energy-efficiency programs. To the extent correlation occurs between 
energy-efficiency programs and codes and standards, and the latter are unaccounted for in the 
model, the savings impact estimate will be biased. Accurate accounting of codes and standards 
effects is important due to the correlation between energy codes and standards resulting from 
their complementary relationship with utility investments, and savings from codes and standards 
substituting for utility investments. This has been of particular relevance in California, where 
utilities actively participate in developing and adopting codes and standards, and can claim such 
savings toward their mandated saving targets. In other states, such as Washington and 
Minnesota, utilities also are allowed to claim savings from codes and standards toward their 
targets.  

Arimura, Newell, and Palmer (2009, p. 14) attempt to control for the influences of building 
codes by categorizing U.S. states according to the stringency of their building codes, and by 
including categorical variables in their model. However, as they note (p. 17), their “admittedly 
blunt measure of code stringency is insufficient to detect any effect.” Their measure may be too 
blunt in that it does not account for differences between state building code compliance and 
enforcement, which largely remains unknown. 

A second omitted variable is the extent that states are affected by federal appliance standards. 
While all states are required to comply with federal standards, some are more affected by certain 
standards than others due to differences in economic, demographic, and climate characteristics. 
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For example, federal air conditioning standards are likely to have a greater effect on electricity 
consumption in states with warm climate than with mild climates. If states with high cooling 
demands also have more stringent energy codes, and codes are omitted from the model, the 
energy-efficiency savings estimate will be biased. T-D savings analyses have not controlled for 
the differential effects of federal standards on states energy consumption.  

A third variable omitted is third-party, energy-efficiency expenditures by state or quasi-
governmental bodies. Rather than requiring utilities to invest in energy efficiency, some states 
have authorized agencies using public benefit charges to fund energy-efficiency investments 
(such as: New York [NYSERDA]; Oregon [Energy Trust of Oregon]), and Wisconsin [Focus on 
Energy]). Arimura, Newell, and Palmer (2009, p. 37) collect data on DSM spending by such 
agencies, but express concern that some third-party expenditures may also be reported in utility 
energy-efficiency spending. To the extent that third-party spending correlates with utility 
expenditures and remains unaccounted for, omissions from models will bias energy-efficiency 
savings impact estimates.   

In California, the major sources of third-party or non-utility energy-efficiency spending have 
been with American Recovery and Reinvestment Act funds, administered by the CEC, local 
government initiatives, and federal tax credits. In a T-D evaluation of energy savings in 
California, it would be important to collect data and control for spending from these sources.   

Other Drivers of Energy Use 
The regression model must also effectively control for other energy use drivers correlated with 
the programs. Most studies accomplish this by including geographic fixed effects (e.g., for utility 
service territory or state) and explicit controls for time-varying factors on the right-hand side of 
Equation 2.1, such as energy prices, income, and weather. Failure to include these variables from 
analysis could result in omitted-variable bias.  

The most problematic time-varying consumption driver has been energy prices. While theory 
regarding price change effects on consumption is relatively straightforward, identifying and 
estimating these effects has proven difficult for several reasons.  

1. First, in some markets, there has been relatively little movement in electricity’s retail 
price over time, resulting in insufficient variation with which to identify price effects. 
Estimated price coefficients are commonly statistically insignificant or have the wrong 
signs due to a lack of price variation. The studies shown in Table 2.1 have largely 
overcome this problem by including a large number of cross-sectional units in their 
analyses.  

2. Second, the relationship between prices and sales is endogenous, where each affects the 
other. In many markets, endogenous prices and consumption arise because of increasing 
block structures of utility rates (Borenstein, 2009; Ito, 2010). To estimate price effects on 
consumption, a source of price variations exogenous to sales is needed. Unfortunately, 
finding instruments for energy prices has been difficult. Most researchers have ignored 
this issue, though some have argued that prices are effectively exogenous to consumption 
(Rivers and Jaccard, 2001).  
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Data Sources 
Most T-D studies have obtained macro sales (consumption) and utility program energy-
efficiency expenditures or ex ante savings data from the U.S. Department of Energy’s EIA. 
These data are self-reported by the utilities in survey forms EIA-826 and EIA-861, 5 and are 
known to have several issues (Horowitz, 2004; Arimura, Newell, and Palmer, 2009), including:     

• Inconsistencies between utilities in reporting of sales by end-use sector. For example, 
some utilities may categorize certain customers as large commercial, while others may 
categorize them as industrial.  

• Inconsistencies by utilities over time in reporting of sales by end-use sector. 

• Varying quality in reports of energy-efficiency expenditures between utilities and  
over time. 

Differences between utilities or changes in reporting practices over time means that consumption 
and energy-efficiency data series enter the models with error. Error in the reporting of sales will 
be absorbed by the error term, and will result in less precise coefficient estimates. The 
consequence of measurement error in energy-efficiency expenditures is more serious, as it will 
result in estimation bias of utility program savings realization rates or cost-effectiveness.   

Evidence from T-D Studies about Utility Program Savings Impacts 
Questions about utility program savings and cost-effectiveness, based on conventional B-U 
evaluations, intensified in the 1980s and early 1990s. As Figure 2.2 above shows, DSM program 
expenditures increased rapidly, but some analysts believed insufficient evidence existed to justify 
such spending. A contentious point was how fully utility program evaluations accounted for 
freeridership. Many studies used discrete-choice analysis of utility program participation and 
electricity consumption to estimate program savings (Hartman, 1988; Train, 1988; Waldman and 
Ozog, 1996).  

One of these studies’ main conclusions was that freeriders accounted for a large share of utility 
program participation and savings. For example, Train’s analysis of Southern California 
Edison’s energy-efficiency program estimates that 70 percent of energy savings would have 
occurred in the program’s absence (1988, p. 124). Furthermore, studies of utility energy-
efficiency program accounting practices and incentives reinforced doubts about utility savings 
estimates (Joskow and Marron, 1992; Soft and Gilbert, 1994).  

In their 1996 paper, “How Many Kilowatts are in a Negawatt?,” Parfomak and Lave adopted a 
new approach to the question of utility savings, relying on time-series regressions of macro-level 
consumption data for a large number of utility service territories. Their panel regression of 
commercial and industrial sales on conservation expenditures and other consumption drivers 
involved 39 U.S. utility service territories between 1970 and 1993. Using a double-log model in 
the first differences, they found that consumption reductions from utility programs equaled 99 
                                                 
5  Form EIA-826 includes information about utility-level retail sales of electricity and associated revenue by end-

use sector. Form EIA-861 includes information about electricity sales, revenues, customer counts, peak load, 
electric purchases, DSM programs, green pricing and net metering programs, and distributed generation 
capacity. 
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percent of what utilities claimed. Parfomak and Lave (1996) did not analyze impacts of energy-
efficiency expenditures in the residential sector.  

Almost a decade later, Horowitz (2004) performed a similar analysis of utility program savings 
in the U.S. commercial sector. He analyzed commercial electricity consumption in 42 states 
between 1989 and 2001, finding a significantly lower realization rate (54 percent) than Parfomak 
and Lave (1996). He speculated this was due to differences in model specifications, estimation 
samples, and time periods, or changes in the quality or implementation of DSM programs.  

Noting persistent doubts about utility program savings in spite of Parfomak and Lave (1996) 
findings, Loughran and Kulick (2004) estimated utility program impacts on electricity 
consumption in all retail sectors. The authors modeled the first-difference of the log of retail 
electricity sales as a function of the first difference of the log of time-varying factors such as 
income, weather, and prices. The number of cross-sectional units in their sample was 
considerably larger than in the Parfomak and Lave (1996) study, including 324 utilities with 
positive DSM expenditures between 1992 and 1999. Loughran and Kulick found that energy-
efficiency expenditures reduced consumption, but by a much smaller amount and with lower 
cost-effectiveness than claimed by utilities. Actual savings were approximately 20 to 25 percent 
of those claimed by utilities. Loughran and Kulick suggest utilities have not adequately 
accounted for freeridership in their savings estimates.  

Auffhammer, Blumstein, and Fowlie (2008) used Loughran and Kulick’s retail electricity sales 
data and model specifications, but reached an opposite conclusion. They pointed out two flaws in 
Loughran and Kulick’s analysis and interpretation. First, in calculating an overall DSM savings 
rate, Loughran and Kulick did not report utility sales-weighted estimates of energy savings. 
Instead, they took an unweighted average of savings across all utilities. Second, Loughran and 
Kulick did not use the appropriate statistics in testing the hypothesis that true savings equal 
claimed savings. After using a sales-weighted estimate of savings and forming proper test 
statistics, Auffhammer, Blumstein, and Fowlie (2008) found that average utility reported savings 
fall within the 95 percent confidence interval for actual savings. Thus, they concluded they 
cannot reject the hypothesis that reported savings equal actual savings. They also found 
significantly higher program cost-effectiveness than Loughran and Kulick did.  

Horowitz (2007) studied electricity consumption in the residential, commercial, and industrial 
sectors. He used difference-in-differences methods to estimate the impacts of energy-efficiency 
policies on electricity consumption between 1977 and 2003. He divided the estimation period 
(1977 to 2003) into pre (1977-1992) and post (after 1992) periods, corresponding to when a 
number of states made substantial commitments to energy-efficiency programs. Using energy 
savings data, he then classified each state as having strong, moderate, or weak commitments to 
energy-efficiency policy. Employing a difference-in-differences estimator to estimate savings 
impacts of strong DSM commitments in the post-period for the residential, commercial, and 
industrial sectors, Horowitz found that strong commitments to energy efficiency results in 
decreased energy intensity in the residential sector (4.4 percent), commercial sector (8.1 percent), 
and industrial sector (11.8 percent). However, in the residential sector, Horowitz found strong 
commitments to energy efficiency associated with increased electricity consumption.  

Arimura, Newell, and Palmer (2009) also studied retail electricity consumption, but controlled 
for a number of factors affecting consumption that earlier studies ignored or were unable to 
control for. These factors include third-party DSM spending, codes and standards, and 
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decoupling. For example, the authors created categorical variables for the stringency of state 
residential building codes. The variables were defined in regard to current and previous versions 
of the IECC.6 They also allowed energy use to depend on energy-efficiency expenditures in a 
more flexible way than most previous studies. Using utility EIA data from 1989 to 2006, 
Arimura, Newell, and Palmer found DSM savings of 1.1 to 1.4 percent and predicted cost-
effectiveness of 5.5 to 6.4 cents per kWh—savings that are significantly less and have a greater 
cost-effectiveness than reported by utilities. 

Noting that researchers have not applied T-D evaluation to Canadian energy-efficiency 
programs, Rivers and Jaccard (2011) analyzed energy-efficiency program savings and cost-
effectiveness in 10 Canadian provinces between 1990 and 2005. They found that DSM spending 
had a small and statistically insignificant impact on consumption. However, they also noted their 
finding come with a few caveats. First, their model does not control for potential endogeneity 
between programs spending and electricity consumption, or the impact of codes and standards 
and other government policies on consumption. Second, their measure of energy-efficiency 
investment includes energy-efficiency and demand-response expenditures.  

Other Approaches to Estimating Utility Program Energy Savings 
We identified several other methods for estimating energy savings that could serve as 
alternatives or supplement B-U approaches currently in use. One approach is exemplified by the 
discrete choice studies of Train (1988), Hartman (1988), and others. These studies use 
microeconomic data on utility customer consumption and program participation to estimate 
energy savings shares attributable to utility programs, freeridership, and natural market adoption. 

A second approach is exemplified by a recent study by Sudarshan and Sweeney (2008), who 
estimated energy savings attributable to California state energy policies using macro data. The 
study explains the difference in per capita electricity consumption between California and the 
rest of the United States as a function of climate (and thus heating and cooling loads), water 
heating use, household income and size, industry type, and population distributions between 
rural and urban areas. After accounting for these factors, the authors argued that the remaining, 
unexplained difference between California and the rest of the United States can be attributed to 
policy differences. Sudarshan and Sweeney noted that their estimate of the unexplained 
consumption difference is similar to the CEC’s estimates of savings from California policy. 

The European Union (EU) also completed a study investigating the use of energy-efficiency 
indices for verifying member country compliance with EU energy savings goals (Bosseboeuf, 
Lapillone, and Eichhammer, 2005; Lapillonne, Bosseboeuf, and Thomas, 2009). This approach 
involved the construction of energy consumption indices for the most important end uses in the 
residential, industrial, transport, and service sectors. The end-use indices averaged to achieve a 
sector index, using the end uses’ shares of consumption as weights. The advantage of the B-U 
energy-efficiency index in comparison to aggregated (T-D) indicators is they “are cleaned from 
the structural changes and from other factors not related to energy efficiency (more appliances, 
more cars…)” (Bosseboeuf, Lapillone, and Eichhammer, 2005, p. 1,128).  

                                                 
6  The variables are not significant or have the wrong signs, casting doubt on how well they control for the 

impacts of building code stringency on energy consumption. 
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3. Top-Down Methods in the Context of California 
Energy-Efficiency Policy 

Introduction 
In the previous chapter, we reviewed T-D evaluation methods and their applications for 
estimating utility program and total market gross savings. We showed that T-D studies have 
resulted in a wide range of savings impact and cost-effectiveness estimates, despite employing 
similar research designs, analytic models, and data. We also found that assumptions necessary to 
identify utility programs’ savings impacts are strong and difficult to verify. In spite of their 
reasonably sound conceptual underpinnings and analytic approaches, extreme differences in the 
results raises serious questions about these methods’ reliability and appropriateness for energy-
efficiency investment decision making.  

In this chapter, we evaluate T-D methods and consider their potential use for energy-efficiency 
policymaking in California, particularly in the context of the three main research issues 
delineated in the RFP: estimating energy savings attributable to IOU programs; evaluating the 
state’s progress toward achieving its greenhouse gas reduction goals; and forecasting. 

In gauging the utility of this general approach, we examine the following standpoints: (1) data 
availability and collection; (2) applicability to different retail energy sectors; (3) reliability of 
savings estimates (bias and precision); and (4) policy applications.  

Data Availability and Collection  
Table 3.1 shows the data required to estimate utility program savings using T-D evaluation 
methods. Assuming the unit of analysis would be the utility service territory, only California 
utility service territories would be included in the analysis, and the data frequency would be 
annual. Fifteen data series would prove essential for estimating utility program savings in the 
residential, commercial, industrial, and agricultural sectors. All data series are available annually 
at utility service territory or county levels, except variables for codes and standards, which would 
have to be constructed. Also, data series at county levels would require being mapped to utility 
service territories.  
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Table 3.1. Data Sources for T-D Analysis 

Data Series Source Availability Applicable Sectors Years 
Energy sales EIA Form 861, CEC, or utilities Utility service territory 

and sector 
All 1989–present 

Population U.S. Census Bureau County/City/MSA Residential 1970–present 
Commercial floor space CEC, McGraw-Hill Construction 

Dodge 
County Commercial 1977-present 

Commercial value added/income/retail sales U.S. Bureau of Economic Analysis County Commercial 1969–present 
Electricity prices  EIA Form 826, CEC, or utilities Utility service territory 

and sector 
All  1989–present 

Gas prices (estimated from revenues and sales) EIA Utility service territory 
and sector 

All 1973–present 

Personal income U.S. Bureau of Economic Analysis County Residential, commercial 1969–present 
Industrial value added/income U.S. Bureau of Economic Analysis County and NAICS Industrial 1969–2000 (SIC); 2001–present 

(NAICS) 
Farm income U.S. Bureau of Economic Analysis County Agricultural 1969–present 
Consumer or producer price index U.S. Bureau of Economic Analysis State All 1989–present 
Weather (HDDs, CDDs) National Oceanic and Atmospheric 

Administration 
Utility service territory Residential, commercial, 

industrial, agricultural 
1965–present 

Appliance saturation Residential Appliance Saturation 
Survey or Historical U.S. Census 

Household Residential RASS (2003, 2009); U.S. 
Census (1970, 1980, 1990, 
2000) 

Energy-efficiency expenditures or ex ante 
savings 

EIA Form 861, CEC, or CA IOUs Utility service territory 
and sector 

All 1989–present 

State energy codes and standards CEC None Residential, commercial, 
agricultural 

1975–present 

Federal energy codes and standards U.S. Department of Energy None Residential, commercial, 
agricultural 

 1987-present 
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Most of these data series are publicly available for free. Energy consumption, prices, and 
efficiency expenditures for utility service territories and residential, commercial, and industrial 
sectors are available on the U.S. Department of Energy’s EIA Forms 861 and 826. The CEC also 
has available sales data for IOU and non-IOU service territories starting from 1980, which could 
be used to construct consumption series for the California utility service territories.7 Use of these 
data would alleviate many concerns about the quality and consistency of the EIA consumption 
data.  

Data on annual energy-efficiency program expenditures can be obtained from the CEC or 
directly from the utilities. Average prices for each utility and sector could be estimated from 
annual utility revenue and sales data. Annual residential, commercial, industrial, and farm 
income data are available from the Bureau of Economic Analysis Regional Economic Accounts 
at the county level.8 Historical weather data on annual heating and cooling degree days are 
available from the National Oceanic and Atmospheric Administration’s National Climate Data 
Center.  

Historical data on the saturation of central air conditioning units and gas and electric heat, which 
could be used to weight heating and cooling degree days in a regression analysis, are available 
from California’s Residential Appliance Saturation Survey and from the U.S. Census. Details 
about California building codes and appliance standards and federal appliance standards are 
available from the CEC, the U.S. Department of Energy, and the Building Code Assistance 
Project.  

As most required data are available electronically, data collection costs would be modest. Data 
preparation, however, would be more costly, facing three principal challenges. First, it would be 
desirable to construct consumption and energy-efficiency expenditure series at the utility service 
territory level, using data from the CEC or the utilities. Second, county- and other geographic-
level data would have to be mapped to utility service territories, given that the largest utilities’ 
service territories cover parts of many counties. This would require logical, consistent mapping 
methodologies. Third, variables would have to be constructed to account for the impacts of state 
and federal codes and standards on energy use in the residential and commercial sectors 
(Arimura, Newell, and Palmer, 2009; Aroonruengsawat, Auffhammer, and Sanstad, 2009; 
Jacobson and Kotchen, 2010).  

While California is subject to state building codes and state and federal appliance standards, 
some areas are more affected by codes and standards than others. For example, pool pump 
standards would be expected to have their greatest impact in the southern part of the state, where 
most pools are located. Similarly, areas with higher building activity would experience greater 
savings from building codes. Measuring savings impacts from California utility programs would 
require accounting for these differences.  

                                                 
7  The CEC developed data series at the planning area level, which is similar but slightly different than the utility 

service territory. In the industrial sector, their data are further broken out into 28 different NAICS/SIC code 
level classifications. In the commercial sector, CEC data are broken out into building types. They constructed 
these series by requesting billing data directly from the utilities. The billing data could be used to form 
consistent consumption series.  

8  Regional Economic Accounts are available at: http://www.bea.gov/regional/reis/  
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Applicability to Different Sectors  
T-D evaluation methods could be applied to the residential, commercial, and industrial sectors, 
and possibly to the agricultural sector. Table 3.2 shows the data series required for differing 
retail sectors.  

Table 3.2 Data Availability and Variable Definitions by Sector 

Data Series Residential Commercial Industrial Agricultural 
Energy sales x x x ? 
Population x       
Commercial value added/income/retail sales   x     
Commercial floor space  x   
Industrial value added/income     x   
Farm income       x 
Electricity prices x x x x 
Gas prices x x x x 
Personal income x x   x 
Weather (HDDs, CDDs) x x x x 
Appliance saturations x    
Energy-efficiency expenditures or ex ante savings x x x x 
State energy codes and standards x x     
Federal energy codes and standards x x     
 
We are uncertain about the feasibility of estimating a model for the agricultural sector due to the 
unavailability of sales data. EIA does not report sales on the agricultural sector, so these sales 
data would have to be collected from the CEC or California utilities. Another potential obstacle 
is that agricultural sales data may include sales to food processors. It will be necessary to closely 
investigate how any of the agricultural energy sales series were constructed.   

Table 3.3 shows possible model specifications for each sector.  
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Table 3.3. Top-Down Model Specifications 

Variable  Residential Commercial Industrial  Agricultural 
Dependent variable 
(energy-use indicator)  

Energy sales per 
capita 

Energy sales per 
dollar of valued added 
in the commercial 
sector or energy sales 
per floor space 

Energy sales per 
dollar of valued added 
in the industrial sector 

Energy sales per 
dollar of income in the 
agricultural sector 

Energy-efficiency 
indicator 

Energy-efficiency 
expenditures per 
capita 

Energy-efficiency 
expenditures per 
dollar of value added 
in the commercial 
sector 

Energy-efficiency 
expenditures per 
dollar of value added 
in the industrial sector 

Energy-efficiency 
expenditures per 
dollar of income in the 
agricultural sector 

Other controls Personal income, 
electricity price, gas 
price, weather, codes 
and standards (lagged 
building starts) 

Personal income, 
electricity price, gas 
price, weather, codes 
and standards 

National GDP, 
manufacturing 
employment, 
electricity prices, 
natural gas prices, 
weather 

National GDP, 
electricity prices, gas 
prices, weather 

Notes: All models would include utility service territory fixed effects, and could be estimated with a time trend or lagged values 
of the dependent variable. 

 
In the residential sector, the dependent variable would be energy sales per capita, and the energy-
efficiency indicator would be efficiency expenditures per capita. The main controls would be 
electricity prices, gas prices, weather, and variables for codes and standards. 

Two concerns arise with the residential model. First, because many utility consumers face 
increasing block tariffs for electricity (Borenstein, 2009; Ito, 2010), electricity prices and 
consumption would be endogenous. An instrumental variables approach may be necessary to 
estimate price effects (Aroonruengsawat, Auffhammer, Sanstad, 2009). Second, and of greater 
concern, would be adequately controlling for savings impacts from codes and standards.  

The commercial sector would have a similar model specification: the dependent variable would 
be energy sales per foot of floor space or per value added, and the energy-efficiency indicator 
would be expenditures per foot of floor area or value added. Modeling and estimation issues in 
the commercial sector would be similar to those in the residential sector. Prices may be 
endogenous due to increasing block tariffs, and the impacts of codes and standards would be 
difficult to account for.  

The industrial sector best lends itself to T-D evaluation, as codes and standards are less 
important. The dependent variable would be energy use per dollar of value added, and energy 
efficiency would be expenditures per dollar of value added. The biggest concern with the 
industrial model would be how to control for changes in energy intensities unrelated to energy 
efficiency, and from shifts in the types of industry over time. For example, it is well known that 
industry has left California, and the companies that remain may be less energy-intensive than 
their predecessors. Manufacturing employment and capital indicators could be employed to 
account for these shifts. The industrial sector model would also include the national gross 
domestic product to reflect the strength and demand for industrial goods in the national 
economy.  
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Sales in the agricultural sector will be driven by irrigation and possibly light food processing. A 
potential confounding problem this model faces is that some food processing classifies as 
agricultural and some as industrial. The dependent variable would be sales per dollar of value 
added or farm income. The energy-efficiency indicator would be expenditures per dollar of value 
added. Codes and standards would not be a significant issue, but it might be necessary to control 
for changes over time in the shares of different crops grown, which would affect irrigation 
demand.  

Reliability of T-D Evaluation Methods 
At the beginning of this chapter, we noted that T-D evaluations of utility programs have resulted 
in a wide range of savings estimates. While it is not possible to diagnose with certainty the 
causes of these differences, they raise questions about the methods’ reliability for estimating 
savings. Reliability concerns include whether regression analysis results in a parameter estimate 
(i.e., a savings realization rate or energy savings per dollar expenditure) equal to the true 
parameter. It also raises concerns regarding the savings estimate’s precision for use in potential 
policy applications.  

In the literature review, we described the following three assumptions necessary to identify 
savings impacts from utility energy-efficiency programs: 

• Energy-efficiency expenditures must vary sufficiently over time. 

• Energy-efficiency expenditures variations must be exogenous to consumption. 

• Factors correlated with energy-efficiency expenditures and consumption must not be 
omitted from the model. 

In this section, we examine whether these assumptions are likely to remain viable in T-D 
evaluation of California utility program savings. It would also be important for evaluators using 
T-D methods to test these assumptions. 

Between 1989 and 2009, significant variations in energy-efficiency expenditures occurred. These 
variations should be sufficient to identify utility programs’ savings impacts on consumption. 

The second assumption concerns the exogeneity of utility expenditures. In the literature review, 
we described threats to the validity of this assumption, including selection by utilities in energy-
efficiency spending and the impacts of time-varying attitudes towards energy efficiency and the 
environment on consumption and energy-efficiency spending. Program spending selection, 
however, would likely present less of an issue in California than in other states. Since the 1970s, 
California utility energy-efficiency investments have largely been driven by responses of state 
policy to national and state energy supply crises in the 1970s, late 1990s, and early 2000s (Eom 
and Sweeney, 2009; Kavalec and Schultz, 2011, pp. 2-4). This means that energy-efficiency 
spending is more likely to be exogenous with consumption. Another factor mitigating the 
potential for endogenous energy-efficiency expenditures is the largest IOUs, which account for 
70 percent of state electricity sales, are regulated by the same agency, the CPUC, and face 
similar incentives to invest in energy-efficiency programs.  

The third assumption concerns possible omissions of variables correlated with consumption and 
energy-efficiency expenditures. Omitted variable bias is most likely to arise in the residential and 
commercial sector models, given the difficulty in capturing significant savings impacts of state 
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and federal codes and standards, and their potential correlation with energy-efficiency 
expenditures. T-D studies have employed time trends, dummy variables for code stringency, or 
composite variables of stringency and compliance to measure savings. Our results indicate that 
developing a reliable indicator of codes and standards savings impacts may be possible. 

Overall, we found that necessary identification assumptions are likely to be satisfied in 
California. Endogenous energy-efficiency spending and omitted variable bias do not appear to be 
significant concerns, perhaps excepting codes and standards. These issues are more likely to 
arise in studies involving a larger number of cross-sectional units, where energy-efficiency 
spending is likely to be determined endogenously in some areas.  

Uncertainty and Precision of Savings Estimates 
Precision refers to the statistical certainty with which the savings impacts of utility energy-
efficiency programs are measured. Precision is usually expressed in terms of a confidence or 
probability that true savings lies within a distance of the savings estimate. Many T-D evaluations 
have reported fairly imprecise savings estimates, casting doubt on the  usefulness of this 
approach for many California policy purposes (Auffhammer, Blumstein, and Fowlie, 2008; 
Rivers and Jaccard, 2011). Nevertheless, it is should be noted that T-D evaluation would make it 
possible to quantify uncertainty statistically, which cannot be accomplished with current B-U 
approaches.  

To illustrate why precision may limit application of T-D models, consider a recent CEC 
workshop (May 25, 2011) on estimating historical energy-efficiency impacts for use in long-term 
demand forecasting.9 At the workshop, CEC staff presented preliminary estimates of California 
utility program savings from a T-D regression analysis of the natural logarithm of per capita 
income on DSM expenditures per capita, a time trend, and other control variables in natural log 
form (including electricity rate, natural gas rate, cooling degree days, and heating degree days).10 
The estimate of the coefficient on DSM expenditures per capita was -0.0011, with an estimated 
standard error of 0.00052. The point estimate implies that a one-dollar increase in per capita 
DSM spending would correlate to an 0.11 percent decrease in per capita consumption. As Table 
3.4 shows, with state per capita consumption of 7,037 kWh in 2009, this would imply cost-
effectiveness of 7.74 kWh of savings per dollar, or 12.9 cents per kWh.11  

                                                 
9  May 25, 2011, IEPR Staff Workshop on Historical Energy Efficiency Estimate and Update to the 2009 California 

Energy Demand Forecast.  Documents from the workshop are available here: 
http://www.energy.ca.gov/2011_energypolicy/documents/2011-05-25_workshop/  

10  Results are available at: http://www.energy.ca.gov/2011_energypolicy/documents/2011-05-5_workshop/ 
presentations/Estimating_Historical_Efficiency_Program_Impacts_Chris_Kavalec.pdf. 

11  This is an approximation of per capita savings, as 2009 consumption includes energy-efficiency expenditure 
impacts. 
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Table 3.4. Precision of T-D Savings Estimates 

  Point Estimate LB 95% CI UB 95% CI 
Retail sales (MWh)1 259,583,623 259,583,623 259,583,623 
2009 population2 36,887,615 36,887,615 36,887,615 
Per capita consumption (kWh) 7,037 7,037 7,037 
Predicted per capita savings per dollar 
expenditures (kWh)3 

7.741 14.778 0.549 

Cost per kWh savings (cents) 12.918 6.767 182.183 
SCE DSM expenditures 20094  $225,000,000 $225,000,000 $225,000,000 
SCE claimed savings (MWh)4 1,704,000 1,704,000 1,704,000 
Model predicted IOU savings (MWh) 1,741,694 3,325,053 123,502 
Sources:  
1. EIA Form 861, 2009. 
2. U.S. Census, http://www.census.gov/popest/eval-estimates/eval-est2010.html. 
3. Calculation based on results in Kavalec presentation (slide 21) to CEC, May 25, 2011, http://www.energy.ca.gov/ 

2011_energypolicy/documents/2011-05-25_workshop/presentations/Estimating_Historical_Efficiency_Program_Impacts 
_Chris_Kavalec.pdf. 

4. 2009 SCE Annual Report, http://eega2006.cpuc.ca.gov/DisplayAnnualReport.aspx?ID=7. 
 
To illustrate the uncertainty of regression-based utility program savings, we estimated 2009 SCE 
energy savings using the cost-effectiveness point estimate and lower and upper bounds of the 95 
percent confidence interval. In 2009, SCE reported DSM expenditures of $225 million and first-
year savings of 1,704 GWHs using B-U calculations. Based on SCE’s expenditures, the model 
predicts total electricity savings of 1,741 GWH, just 2 percent more than savings calculated 
using the B-U method.  

Although this comparison of T-D and B-U savings addresses just one utility and year, it suggests 
that T-D approaches may be able to predict savings accurately. Nevertheless, we know there is 
approximately a 95 percent probability that true utility program cost-effectiveness lies in the 
interval [-0.21%, -0.0078%]. If we calculate total savings at the lower and upper bounds of the 
confidence interval for cost-effectiveness, we get saving of 3,325 GWH and 123 GWH, 
respectively. Thus, there is a 95 percent probability that true savings fall between 7 percent and 
195 percent of reported savings. This would create substantial uncertainty in savings estimation 
for use in California policy.  

Policy Applications 
As noted, T-D methods offer several potential applications to California policy, including 
attribution of utility program savings, tracking of market gross savings and progress towards 
meeting greenhouse gas reduction goals, and forecasting the state’s long-term energy demand.  

Attribution of Utility Program Savings 
We foresee two potential problems with applying T-D methods of attribution of savings to 
California IOU programs. First, substantial uncertainty will likely be present in savings 
estimates, as the preceding example using CEC results demonstrated. This would make it 
difficult to use T-D savings estimates as a basis for rewarding or penalizing IOUs for their 
programs’ performance. Second, T-D evaluation may not measure values evaluators need: the 
impact of utility programs in the most recent program cycle. T-D methods provide an estimate of 
the average cost-effectiveness or savings over the estimation period, for utility service territories 
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in the estimation sample. Estimates of average savings may differ greatly from true savings in 
the most recent evaluation cycle. Changes in energy-efficiency program cost-effectiveness over 
the estimation period would have to be ruled out using statistical tests.  

Estimation of Market Gross Savings and Greenhouse Gas Reduction Goals 
T-D methods could be used to track market gross savings and progress towards achieving 
California’s greenhouse gas reduction goals, though there would be challenges to achieving this 
end. As discussed in the literature review, a difficulty in estimating market gross savings is 
measuring naturally occurring savings, which arise from changes in energy prices, attitudes, and 
awareness. In T-D models, prices and time trends normally capture these naturally occurring 
savings, but they also capture other consumption impacts unrelated to market gross savings. 
More research about estimating these savings will have to be completed before T-D methods can 
be applied reliably in this area.  

Demand Forecasting 
T-D evaluation could be applied to estimating historical utility program energy savings for use in 
developing long-term demand forecasts in California. A benefit of applying T-D methods in this 
way is the ability to quantify and incorporate uncertainty from energy efficiency in the forecast. 
This is not possible with B-U savings estimates. Further, although substantial uncertainty exists, 
T-D evaluation may provide a more reliable means of predicting future utility program savings 
as a function of expected future utility program expenditures.  

Summary of Findings 
Based on our analysis of T-D methods and their potential policy applications in California, we 
determined the following findings.  

Data Collection and Preparation  
• T-D evaluation of California energy savings would be inexpensive, especially compared 

to the costs of estimating savings from the bottom up. 

• Most required data are free and publicly available.  

• Significant effort would be required to prepare data for analysis; particularly in 
developing a reliable indicator of codes and standards savings for T-D analysis. 

Applicability to Different Sectors  
• T-D evaluation could be applied to the residential, commercial, and industrial sectors.  

• Application to the agricultural sector would depend on the availability of sales data for 
agricultural customers.  

• T-D evaluation could be applied most reliably to the industrial sector. Evaluation of the 
residential and commercial sectors would have to account for codes and standards 
savings.  
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Reliability  
• Potential bias in T-D savings estimates resulting from selection and omitted variables is 

not significant.  

• Uncertainty can be measured statistically, but precision of savings estimates remains a 
concern. 

Policy Applications  
• The most promising application for T-D methods would be in estimating historical 

savings impacts of utility programs for use in forecasting long-term demand. T-D 
evaluation would enable the CEC to quantify uncertainty from energy efficiency in such 
forecasts.  

• T-D methods may not be appropriate for attributing utility energy savings due to 
imprecision in savings and cost-effectiveness estimates, and such estimates may not 
reflect savings during the most recent evaluation cycles. 

Recommendation to CPUC  
Based on these findings, Cadmus makes the following recommendations to the CPUC regarding 
application of T-D evaluation methods: 

• California should apply T-D evaluation methods in estimating historical energy savings 
for developing forecasts of long-term demand. Applying T-D evaluation towards this 
purpose would enable the CEC to quantify uncertainty from energy efficiency in its 
forecasts, and would create opportunities to refine T-D methods for potential use in other 
policy areas. 

• California should not rely solely on T-D evaluation methods for attributing energy 
savings to utility programs. These methods, however, could be used to verify savings 
estimated from the bottom-up. One possible approach would be to perform both T-D and 
B-U evaluations only for programs with the largest savings. 

• California should continue to explore the application of T-D methods to the estimation of 
market gross savings for measuring progress towards meeting the state’s greenhouse gas 
reduction goals. However, too many uncertainties about measuring naturally occurring 
savings preclude reliance solely on these methods. 
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4. Proposal 

Introduction  
CPUC has expressed interested in developing cost-effective, reliable means of estimating energy 
savings from utility programs, state and federal codes and standards, and naturally occurring 
measures. T-D evaluation methods could potentially satisfy this need. In our assessment of T-D 
evaluation’s applicability to California policy, we concluded that some T-D applications are 
potentially promising.  

In this proposal, we describe a plan for estimating the total market gross savings in California 
using T-D methods. To our knowledge, researchers have not applied T-D evaluation to 
estimating market gross savings in California or other states. We believe research on estimating 
market gross savings would have great benefit for California, which must track its progress 
towards meeting greenhouse gas reduction goals.  

In addition to representing a new application of T-D evaluation to a policy objective, our 
research would also improve existing T-D evaluation methods. In estimating market gross 
savings that account for naturally occurring savings—which can result from changes in energy 
prices and changes in awareness and attitudes towards energy efficiency—presents significant 
challenges. Researchers have measured naturally occurring savings by estimating the impacts of 
price changes on energy consumption. However, price changes result in two types of changes: 1) 
transitory, short-term changes in energy use from shifts in the intensity of existing equipment 
use, which would not qualify as energy savings from a market gross perspective; and 2) more 
permanent changes in energy use through the adoption of new and more efficient equipment and 
measures. We propose a method of separately estimating short- and long-term price impacts on 
consumption, and counting only the long-term impacts in estimating market gross savings. 

In addition to improving the estimation of naturally occurring savings, estimating the total 
market gross savings in California using T-D methods would improve the existing methods for 
estimating codes and standards impacts on consumption. In our literature review, we found a 
weakness of existing studies in their inability to rigorously account for the impacts of codes and 
standards. We propose developing a rigorous measure of codes and standards impacts for use in 
T-D models, based on building activity or appliance saturation, climate, and compliance and 
enforcement. 

Finally, our approach would reduce bias and increase the precision of savings estimates by 
employing data from the California utilities (rather than the EIA) to construct the macro 
consumption and energy-efficiency expenditure series. Use of such data would reduce the 
amount of measurement error on both sides of our regression equation. 

The main outcome of this research will be a T-D estimate of market gross savings in each 
California retail energy sector (residential, commercial, industrial, and agricultural) between 
2006 and 2010. We will estimate and report savings estimates for components of market gross 
savings, which include savings from utility programs, codes and standards, and naturally 
occurring adoption. To check our savings estimates’ plausibility, we will compare the results to 
the CPUC and CEC savings estimates.  

A technical description of our proposed research approach, a staffing plan, and a budget follows.  



California Public Utility Commission August 12, 2011 

The Cadmus Group, Inc. / Energy Services 36 

Technical Approach and Project Tasks 
In our analysis, we will estimate market gross savings in each of California’s retail electricity 
sectors between 2006 and 2010. Our approach relies only on California utility data. Using data 
for other utilities or applying results from existing T-D evaluations would prove inappropriate, as 
the resulting estimates would represent average savings for a wide range of utility service 
territories and states, having very different market conditions and utility program experiences 
than in California.  

We will estimate separate models for each of the four main utility customer sectors, and will 
report market gross savings. This approach would allow the impacts of energy-efficiency 
expenditures to vary across sectors, yielding more precise estimates of market gross savings and 
cost-effectiveness.  

The analysis unit will be the utility service territory, which will increase the number of 
observational units, allowing for more precise estimates while limiting the pilot’s cost. In 2009, 
75 electric distribution companies served California retail customers (EIA Form 861, File 2, 
2009). However, just five utilities—Pacific Gas & Electric Co., Southern California Edison Co., 
the City of Los Angeles, San Diego Gas and Electric, and Sacramento Municipal Utility 
District—accounted for 82 percent of all retail sales. Our sample will include these five largest 
utilities, plus other large municipal utilities, including the City of Santa Clara, the City of 
Anaheim, and the City of Riverside—each of which account for approximately 1 percent of state 
electricity sales. We will explore the feasibility of increasing the estimation sample to include 
smaller utility service territories. Our ability to increase the number of utility service territories in 
the estimation will depend on the costs necessary to clean and prepare the data.  

We will estimate the model using annual data between 1989 and 2010, to alleviate concerns 
about the quality of data before this period and because many of the model’s variables are not 
available at higher frequencies.12 With eight utility service territories in the estimation sample, 
the number of observations would be 168.  

Task 1: Project Initiation Meeting 
The project would kick-off with a meeting between Cadmus and the CPUC and KEMA project 
management team. At this meeting, we will review and confirm the project objectives, tasks, 
deliverables, and deadlines. Cadmus will then revise the work plan accordingly for delivery to 
the project management team. 

Deliverable: A revised work plan.      

Task 2: Data Collection and Preparation 
Cadmus will collect data to estimate market gross savings in the residential, commercial, 
industrial, and agricultural sectors. Required data, described in the previous chapters, includes 
information about annual energy-use indicators, utility program expenditures, weather, energy 
prices, consumer and producer prices, other drivers of consumption, and codes and standards for 
at least eight California utility service territories between 1989 and 2010 (and possibly for more 

                                                 
12  EIA Form 861, annual utility DSM expenditure data are typically released between November and 

December of the following year (source: personal communication with EIA staff, May 25, 2011).  



California Public Utility Commission August 12, 2011 

The Cadmus Group, Inc. / Energy Services 37 

utilities).13 We will collect the data from the EIA, the U.S. Census Bureau, the Bureau of 
Economic Analysis, the National Oceanic and Atmospheric Administration, and the CEC. In all, 
we will collect or construct approximately 40 data series at the utility service territory or county 
level. 

An important feature of our proposal is the use of utility billing data to construct the macro 
consumption data series and energy-efficiency expenditure series. By constructing the series, 
rather than relying on EIA data, we will increase the precision of our utility program savings 
estimates, and reduce bias from measurement error in energy expenditures. 

Cadmus will request annual customer billing data between 1989 and 2010 for the California 
utilities in our estimation sample from the CEC, which obtained that data directly from the 
utilities. For each utility and each retail sector, Cadmus will aggregate the billing data to estimate 
annual consumption. The CEC has classified commercial customers by building type and 
industrial customers by SIC/NAIC code. Cadmus will use this information to develop a 
consistent series of customers over time.    

Cadmus will check the consistency and completeness of all data series, identify any issues, and 
analytically determine how any data flaws may affect savings estimates. For example, from 
previous T-D evaluations of utility program expenditures, we observed issues such as an uneven 
quality of self-reported utility expenditures. Error in the reporting of utility energy-efficiency 
expenditures is expected to bias down the estimated cost-effectiveness. Instrumental variables 
can be used in this situation. Nevertheless, in general, we do not anticipate significant problems 
with these series. 

As the analysis unit will be the utility service territory, Cadmus will map data reported at other 
levels, such as county, to utility service territories. For weather, Cadmus will estimate a 
population-weighted average or an appliance saturation-weighted average of heating and cooling 
degree days from weather stations in each utility service territory. For income and other variables 
reported at the county level, Cadmus will estimate population or other appropriate unit-weighted 
averages.14 

Cadmus will adjust all nominal economic series, such as energy-efficiency expenditures, energy 
prices, and incomes, for changes in price levels over time using consumer and producer price 
indexes. 

Quantifying Impacts of Codes and Standards 
A weakness of existing T-D savings evaluations has been their inability to fully account for the 
savings impacts of codes and standards. As part of our research, Cadmus will develop indicators 

                                                 
13  The eight included utility service territories would be: Pacific Gas & Electric Co.; Southern California Edison 

Co.; The City of Los Angeles; San Diego Gas and Electric; Sacramento Municipal Utility District; City of Santa 
Clara; City of Anaheim; and City of Riverside. 

14  If all of a utility’s service territory is contained in one county, that county average would be the average in the 
utility service territory. If a utility service territory comprises all or parts of two counties, we would estimate the 
real personal income at the utility service territory level as a weighted average of the county average real 
personal incomes with weights equal to each county’s share of the population in the utility service territory. 
Cadmus would require utility customer counts by retail sector and by county or zip code to perform these 
calculations.  
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to quantify the impacts of state building codes and federal and state appliance standards on 
energy consumption. These indicators would be independent variables in the regression model. 
In constructing such indicators, Cadmus will build on our experience evaluating savings from 
energy codes and standards in California during the 2006–2008 evaluation cycle.  

The requirements for measuring the consumption impacts of state building codes are affected by 
building activity, code stringency, and compliance and enforcement. As building activity and 
code stringency vary between regions, savings impacts of codes and standards will vary across 
utility service territories.  

Cadmus can measure new construction using annual data on building permits in California 
counties, which are available online from Moody’s Analytics Economy or McGraw-Hill. This 
variable would change over time and across regions. It is well known that building permits 
provide an imperfect measure of building activity; so Cadmus will look for more reliable 
construction indicators before turning to building permits. We will measure code stringency as 
the difference between stringency in the current year and stringency under the previous code. 
This variable would change over time and across climate zones. Compliance and enforcement 
are expected to vary over time and space, but are difficult or impossible to measure. However, as 
we will draw the estimation sample only from one state, we expect that compliance and 
enforcement with building codes will not vary significantly across utility service territories.  

We will capture building code impacts by including new construction and an interaction variable 
between new construction and a measure of code stringency as independent variables. New 
construction would capture additional consumption from growth in building stock. The 
interaction variable would capture consumption impacts of a more stringent building code. We 
would measure savings relative to the previous building code.  

Task 3: Model Development and Analytic Framework 
Primarily, our research will estimate first-year total market gross electricity savings, defined as 
first-year energy savings drawn from the following sources: 

• Utility energy-efficiency programs. 

• State and federal appliance standards and state building codes; the latter are first-year 
savings from new construction. 

• Naturally occurring measures resulting from changes in energy prices and changes in 
attitudes and awareness. 

To estimate savings from these sources, Cadmus will use the following steps: 

1. Estimate a dynamic regression model of energy use (Houthakker, Verlager, and Sheehan, 
1974) as a function of lagged energy use, energy prices, a time trend, codes and 
standards, energy-efficiency expenditures, and other observable variables affecting 
demand. We will estimate this model in reduced form, yielding short- and long-term 
consumption elasticities for each independent variable. 

2. Using the regression results, estimate consumption rates in absence of naturally occurring 
measures, codes and standards, and utility programs for each utility service territory in 
the state.  
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3. Estimate total market gross savings as the difference between counterfactual and 
observed consumption. 

4. Estimate state market gross savings by adding up market gross savings over the utility 
service territories. 

Model Specification 
In the following model, ‘i’ indexes a utility service territory and ‘t’ represents time. For each 
retail energy sector ‘j’ (suppressed), we will estimate an energy-use regression model with the 
following form: 

ln(kWhit) = θln(kWhit-1) + γeln(pe,it) + γgln(pg,it) + βln(Iit) + ωhln(HDDit) +  
ωcln(CDDit) + Σk=0

KδkEEit-k + ηNCit + μ(NCit* Codeit) + τ(TimeTrendt) + λi + μit (Equation 4.1) 

where the variables are defined as follows: 

ln(kWhit) is the natural logarithm of electricity use for utility service territory ‘i’, where 
i=1, 2, …N, in year ‘t.’ The right-hand side of Equation 4.1 includes a lagged value of the 
dependent variable. The lag captures partial adjustments of electricity demand over time 
due to fixed investments in home appliances and energy-using equipment in businesses 
(Houthakker, Verlager, and Sheehan, 1974). In this white paper’s appendix, we show in 
the above model with a lagged dependent variable, where the long-run price elasticity of 
demand equals γe/(1-θ) (Houthakker, Verlager, and Sheehan, 1974; Bernstein and Griffin, 
2005; Rivers and Jaccard, 2011). This coefficient could be used to estimate naturally 
occurring savings from changes in electricity prices.  

pe,it is the electricity price for utility service territory ‘i’ in period ‘t.’ The coefficient γe 
shows the short-run price elasticity of demand.  

Iit is the income for utility service territory ‘i’ in period ‘t.’ The coefficient β is the short-
run income elasticity of demand. 

HDDit and CDDit are, respectively, the annual heating and cooling degree days for utility 
service territory ‘i’ in period ‘t.’ The coefficients ωH and ωC indicate the short-run 
elasticity of consumption with respect to annual degree days.  

EEit-k is the energy-efficiency expenditures in utility service territory ‘i’ in period ‘t-k.’ 
The coefficient δj shows the short-run percentage reduction in per capita consumption in 
period ‘t’ from a one-dollar increase in energy-efficiency expenditures in period ‘t-k.’  

NCit is new construction in utility service territory ‘i’ in year ‘t.’ The coefficient η shows 
the short-run elasticity of consumption with respect to new construction. 

Codeit measures the stringency of the current building code relative to the previous 
building code in year ‘t.’ The coefficient μ shows the short-run elasticity of new 
construction as a function of building code stringency (relative to the previous code).  

TimeTrendt is a time trend variable, which equals one in 1989, and increases by one unit 
annually. It represents the impact of a growing awareness of energy efficiency and 
changing attitudes about consumption. The coefficient τ represents the short-run impact 
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of changing awareness over the year on consumption. Depending on the number of utility 
service territories included in the analysis, it may be possible to include time fixed effects 
instead of a time trend. 15  

λi is a component of the error term, reflecting utility-specific, time-invariant, 
unobservable characteristics. We estimate the contributions of these characteristics with a 
set of dummy variables for the utility service territories:  

Σi=1
N πidit 

where dit=1 if Ui=i; and dit=0 otherwise, where U indicates the utility service 
territory number. The coefficient πi represents the impact of these characteristics 
on consumption in utility service territory ‘i.’  

μit is the error term for utility service territory ‘i’ in year ‘t.’ 

To estimate the long-run elasticity of consumption with respect to an independent variable, we 
divide the variable’s estimated coefficient by one minus the estimate of θ. Table 4.1 summarizes 
model specifications for the residential and other retail sectors.  

Table 4.1 Model Specifications 

Variable  Residential Commercial Industrial  Agricultural 
Dependent variable 
(energy-use indicator)  

Energy sales  Energy sales  Energy sales  Energy sales  

Lagged value of 
dependent variable 

Yes Yes Yes Yes 

Time trend Yes Yes Yes Yes 
Other controls Lagged and current 

energy-efficiency 
expenditures in the 
residential sector, 
personal income, 
electricity price, gas 
price, weather, 
population, new 
construction, 
interaction between 
codes and standards 
stringency and new 
construction 

Lagged and current 
energy-efficiency 
expenditures in the 
commercial sector, 
personal income, dollar 
of valued added in 
commercial sector or 
energy sales per floor 
square footage, space 
electricity price, gas 
price, weather, new 
construction, 
interaction between 
new construction and 
codes and standards 
stringency 

Lagged and current 
energy-efficiency 
expenditures in the 
industrial sector, 
dollars of value added 
in industrial sector, 
national GDP, 
manufacturing 
employment, electricity 
prices, natural gas 
prices, weather 

Lagged and current 
energy-efficiency 
expenditures in the 
agricultural sector, 
income in agricultural 
sector, national GDP, 
electricity prices, gas 
prices, weather 

Notes: All models would include utility service territory fixed effects. 
 
Equation 4.1 is expected to be the main estimating equation; however, Cadmus will estimate 
other model specifications to test the results’ sensitivity and robustness.  
                                                 
15  Cadmus will also consider including utility-specific time trends to capture heterogeneity in naturally occurring 

trends.  
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Task 4: Model Estimation 
Cadmus will estimate retail sector models using 21 years (1989–2010) of annual data for at least 
the eight largest utility service territories in California (and possibly including a larger number of 
territories).  We will include utility fixed effects to capture any unobservable, time-invariant 
characteristics affecting consumption.  

Following a procedure described by Greene (1997, pp. 640-641) and employed by Rivers and 
Jaccard (2011) for dynamic panel models, we will use instrumental variables to estimate the first 
difference of the retail sector models. Instrumental variable estimation is necessary because a 
lagged dependent variable in a panel regression model results in correlation with the disturbance 
term.16    

In addition, several assumptions must hold for unbiased estimates of the model coefficients: 

1. Energy prices and energy-efficiency expenditures are exogenous to energy use.  

2. Any variables correlated with the explanatory variables in the model are included in the 
model (no omitted variable bias). 

3. The error term is not auto-correlated (Wooldridge, 2002). 

Cadmus will test these identifying assumptions to the extent possible, and control for any 
violations of assumptions. For example, we will test the model for evidence of auto-correlated 
errors (Wooldridge, 2002). The log-log model specification should help us control for 
heteroskedasticity.  

Cadmus will also test the reasonableness of estimated coefficients by comparing them to other 
studies. A large body of literature estimates short- and long-term price elasticities, income 
elasticity, and energy-efficiency cost-effectiveness.  

Estimating Total Market Gross Savings 
We will use the model results to estimate total market gross savings, which are the sum of 
permanent or long-term reductions in consumption from energy-efficiency spending, codes and 
standards, attitudes and awareness, and energy prices. We will estimate market gross savings as 
the sum of these components. The difference between observed consumption and market gross 
savings equals what consumption would have been if energy savings activities did not occur.  

Figure 4.1 illustrates the calculation of market gross savings for an example utility. The blue line 
shows actual consumption in a retail sector. The dashed green line shows an estimate of 
consumption without energy-saving activities. The difference between the lines is what we will 
be estimating: market gross savings. 

                                                 
16  This procedure was developed in Nickell (1981) and Arellano and Bond (1991). For instruments, we will use 

twice-lagged differences or levels of the dependent variable. 
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Figure 4.1. Illustration of Estimation of Market Gross Savings 

 
 
To estimate market gross savings, it will be necessary to select reference values or baselines for 
the components of market gross savings (i.e., what utility expenditures, building codes and 
standards, energy prices, and attitudes would have been in absence of the energy savings 
activities). Table 4.2 shows likely reference points and how we will calculate the percentage of 
savings impact for each component.  

We will estimate savings impacts of utility energy-efficiency programs using zero energy-
efficiency expenditures as a reference point. We will estimate savings from changes in attitudes 
and awareness assuming their previous year’s values. We will estimate naturally occurring 
savings from price changes using the previous year’s price as the reference value. We will 
estimate savings from codes and standards using the previous building code or appliance 
standard as a baseline. For building codes, savings will be the amount of new construction times 
the differences in savings between buildings constructed under the most recent code and those 
constructed under the previous code.  
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Table 4.2 Components of Market Gross Savings 

Market Gross 
Savings 
Components 

Long-Term 
Elasticity 

from Model Interpretation 

Reference Value 
for Measuring 

Impact 

How Savings Are 
Estimated  

(E*it = long-term 
consumption) 

Energy-efficiency 
expenditures 

δ0/(1−σ) Long-term percentage 
change in consumption 
from a one dollar increase 
in energy-efficiency 
expenditures 

Zero expenditures E*it x (δ0/(1-σ)) x (ΔEEit) 

Attitudes and 
awareness 

τ/(1−σ) Long-term percentage 
change in consumption 
from changes in attitudes 
and awareness over the 
year 

Previous year E*it x (τ/(1−σ)) 

Prices γε/(1−σ) Long-term elasticity of 
demand 

Previous year E*it x (γe /(1−σ) x 
(Δpe,it/pe,it) 

Codes and standards μ/(1−σ) Long-term elasticity of new 
construction as a function 
of building code stringency 
(relative to the previous 
code) 

Previous code or 
standard 

E*it x (μ/(1−σ)) x NCit x 
ΔCodeit 

 
Using these reference points, we will estimate the savings from each component, which only 
include the long-term impacts of prices, energy-efficiency spending, attitudes, and codes and 
standards on consumption. In the Appendix, we derive expressions for the long-term savings in a 
dynamic consumption model. The last column in Table 4.2 shows these expressions.   

First-year market gross savings for utility ‘i’ in year ‘t’ (mgsti) is the sum of the component 
savings.17 First-year market gross savings in California in year ‘t’ would equal the sum of first-
year market gross savings in the California utility service territories, where i=1, 2, …, N: 

MGSt = Σi=1
N mgsti 

Cadmus will use this methodology to estimate the component savings and market gross savings 
for each California retail energy sector between 2006 and 2010. We will also estimate the 
uncertainty of our savings estimates. Finally, we will gauge the reasonableness of our results by 
comparing them to savings estimates from other studies. 

Task 5: Reporting  
Cadmus will present a detailed draft report summarizing our research efforts, and will submit it 
to the CPUC and other stakeholders for comment. The report will include a detailed description 
of the data collection and preparation effort; the analytical approach, including model 
specification and estimation; and the savings estimates. The report will also discuss requirements 

                                                 
17  When E*

it is desired or permanent consumption, market gross savings are the sum of naturally occurring 
savings, energy-efficiency savings, and codes and standards savings, equal to E*

it *[(γe /(1−σ)*(Δpe,it/pe,it) + 
τ/(1−σ) + (δt/(1−σ))*ΔEEit) + (μ/(1−σ))*NCit*ΔCodeit] = e(ln(Eit) - (1- σ) ln(Eit-1))/σ ∗  [((γe /(1−σ))*(Δpe,it/pe,it) + 
τ/(1−σ) + (δt/(1−σ))*ΔEEit) + (μ/(1−σ))*NCit*ΔCodeit]. See the Appendix for derivation.   
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for California to annually estimate market gross savings. Cadmus will deliver a final report, 
incorporating comments from stakeholders and the CPUC. 

Deliverables: Draft and final reports.  

Task 6: Workshop Presentation 
Cadmus will present the results of our research at a CPUC public workshop. We will use 
comments from the public presentation and from CPUC reviewers to revise the report.  

Project Tasks and Timeline 
Figure 4.2 shows the project timeline. The project would kick-off with a meeting between 
Cadmus and CPUC staff and consultants to confirm the objectives and deliverables for the 
project. We anticipate that the project will take seven months to complete.    
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Figure 4.2. Project Timeline 

Task Sep-11 Oct-11 Nov-11 Dec-11 Jan-12 Feb-12 Mar-12 
Task 1: Project Initiation Meeting 
1. Meeting between Cadmus and CPUC team                                                         
2. Development of revised workplan                                   
Deliverable: Revised workplan based on kick-off 
meeting                                   
Task 2: Data Collection and Preparation 
1. Data collection                                          
2. Data prepared for analysis                                   
3. Develop indicator for codes and standards impacts                                   
Task 3: Model Development 
1. Develop model specifications                                       
Task 4: Model Estimation and Savings Analysis 
1. Estimate model                                          
2. Estimate market gross savings and uncertainty                                       
3. Compare to other studies and robustness checks                                       
Task 5: Reporting 
1. Write draft report                                          
2. Revise final report                                       
Deliverable: Draft final report                                       
Deliverable: Final report                                           
Task 6: Workshop Presentation 
1. Present findings to CPUC and stakeholders                                       
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Team Member Qualifications 

About The Cadmus Group, Inc. 
The Energy Services Group at Cadmus, which will perform the services specified in the RFP, is 
located at 720 SW Washington Street, Suite 400, in Portland, Oregon, 97205. The main 
telephone number for our office is 503-228-2992.  

Cadmus’ principal-in-charge for this project will be Dr. Hossein Haeri, who can be reached via 
the main telephone number or his e-mail address: hossein.haeri@cadmusgroup.com.  

Description of Cadmus Qualifications 
Cadmus’ highly qualified staff includes expert program evaluators, economists, statisticians, 
engineers, and energy analysts. Our proposed team for this project (shown in Table 4.3) provides 
expertise and in-depth knowledge regarding California energy-efficiency evaluations and 
methods. This core team will be supported by Cadmus research analysts and associates, as 
needed.  

Table 4.3. The Cadmus Team 

Name and Title Project Role Recent Relevant Project Experience 
Dr. Hossein Haeri, 
Principal 

Principal-in-charge: Responsible for 
the overall effort; primary contact for 
quality assurance. 

Utility market studies, resource planning, impact 
assessment, and market transformation. Also statistical data 
modeling. 

Dr. James Stewart, 
Senior Economist 

Project manager: Responsible for 
managing day-to-day activities; 
primary contact for project matters. 

Demand response and energy-efficiency program 
evaluations, behavioral (OPOWER) program impact 
evaluation, CPUC Codes and Standards Program 
evaluation, and CPUC Residential New Construction 
program market effects evaluation. 

Dr. M. Sami Khawaja, 
Vice President 

Technical expert: Provides expert 
knowledge regarding top-down 
evaluation methodologies. 

Statistical analysis of DSM program impacts, adjunct 
professor of statistics and econometrics. 

Dr. Allen Lee, Principal Technical expert: Provides expert 
knowledge regarding quantification of 
codes and standards impacts. 

Evaluation of California IOU Codes and Standards Program 
and studies of code compliance in New York and Montana.  

 

Brief Biographies 
Dr. Hossein Haeri, a principal at Cadmus, has nearly 25 years of experience in DSM planning, 
market transformation, evaluation, and quantitative assessment. His expertise covers utility 
resource planning, energy-efficiency performance verification, load research, and economic and 
statistical analysis. He has worked with government agencies, nonprofit organizations, and utility 
companies to aid them in performing market studies, formulating policies and business 
strategies, planning and executing programmatic initiatives, and evaluating the outcomes and 
effectiveness of such initiatives. 

Dr. Haeri’s most relevant work includes leading the preparation of DSM plans for Alliant Energy 
and Con Edison of New York; filing testimony on behalf of the utilities with regulatory 
commissions in Iowa and New York; and multi-sector assessments of energy-efficiency and 
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demand response for Alliant, MidAmerican, and Aquila in Iowa; PacifiCorp; Puget Sound 
Energy; Snohomish County Public Utility District; Seattle City Light; Duke Power; and Ameren 
Utilities, among others. His work addresses both theoretical and analytic aspects, as well as 
practical applications of various approaches to energy resource planning, market transformation, 
and performance assessment. He has worked extensively on the development of cost-effective 
approaches to data development that takes full advantage of available information, including 
integration methods for data collection and analysis. 

Dr. Haeri is an adjunct assistant professor at Portland State University, where he helped found 
the graduate program in Applied Energy Economics, and now teaches courses in Policy and 
Regulation. He holds a bachelor’s degree in quantitative social research from the University of 
Oregon, and a doctorate in regional science from Portland State University. 

Dr. James Stewart, a senior economist and senior associate at Cadmus, specializes in 
econometric and statistical analysis. Dr. Stewart conducts quantitative and qualitative data 
analysis for a broad range of projects, including program evaluations, impact evaluations, 
demand forecasting, and potentials assessments. He has creatively employed a range of statistical 
and econometric methods to identify program impacts, and is proficient in programming with 
SAS, STATA, Microsoft Excel®, and MATLAB.  

Dr. Stewart’s research, published in several peer-reviewed journals, involves studying household 
decision-making, collective action problems, administrative rulemaking, and applying a range of 
econometric methods (such as discrete choice, instrumental variables, selection, and quantile 
regression models).  

Dr. Stewart holds a doctorate in economics from Northwestern University and a bachelor’s in 
economics from the University of Pennsylvania. Before joining Cadmus, he was an assistant 
professor of economics and a Thormand A. Miller and Walter Mintz Professor of economic 
history at Reed College. He has taught econometrics, microeconomics, game theory, and U.S. 
and European economic history.  

Dr. M. Sami Khawaja, a vice president at Cadmus, oversees the firm’s Energy Services Group 
(formerly Quantec, LLC), which currently has a professional staff of more than 130. Dr. 
Khawaja has more than 25 years of economic consulting experience, and he specializes in 
forecasting, market transformation assessment, pricing, cost/benefit analysis, and statistical and 
quantitative analysis for utilities and government agencies. He is also nationally recognized as a 
leader of program design and evaluation methods. 

Dr. Khawaja is well versed in commonly used sampling techniques for load research, including 
ratio-based sampling and model based statistical sampling. His extensive experience in statistical 
sampling design has ranged from simple random sampling for residential surveys to more 
sophisticated sampling design for quality control of large commercial and industrial programs.  

In addition to being one of the authors of the International Performance Measurement and 
Verification Protocol, Dr. Khawaja co-authored the Program Impact Evaluation Guide for the 
public-private collaborative National Action Plan for Energy Efficiency. In early 2011, he served 
as the lead author on the Impact Evaluation Guide for the Electric Power Research Institute. 
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An adjunct professor of economics at Portland State University, Dr. Khawaja teaches 
quantitative economics and statistics. He is one of the founders of the Applied Energy 
Economics and Policy graduate certificate program at Portland State University. 

Dr. Allen Lee,  a principal at Cadmus, has more than 25 years of experience designing, 
managing, and providing technical leadership on a wide range of projects and programs 
involving energy policy, energy efficiency, renewables, environmental analysis, and 
sustainability. Dr. Lee has brought multidisciplinary expertise to challenging research projects 
for public and private sector clients, and has been directly involved in formulating public policy 
for public agencies. 

Dr. Lee has participated in the development, adoption, implementation, and evaluation of 
energy-efficiency building codes and appliance standards. While at the CEC, he oversaw the 
development and implementation of the nation’s first building energy codes and appliance 
standards. In support of the U.S. Department of Energy, he assisted with the development of 
national residential energy-efficiency codes, and managed development of the first software-
based building energy standard for federal residential buildings.  

Dr. Lee has also managed the impact and process evaluations of codes and standards programs in 
several states. He recently completed a multiyear evaluation of the impacts of the California 
utilities’ Codes and Standards Program. He is managing a study of residential code compliance 
in Montana, as well as an evaluation of training and support program impacts on code 
compliance in New York. Dr. Lee also conducted a study of the costs and benefits of adopting 
appliance standards in Idaho.  

Dr. Lee has doctorate and master’s degrees in policy analysis from the RAND Graduate School. 
He also has a masters in aerospace engineering from the University of Southern California, and a 
bachelors in engineering from Caltech. 
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Appendix A. Dynamic Model of Energy Use  
This appendix shows the derivation of a dynamic macro model of energy consumption and 
outlines that the short- and long-term elasticities of demand can be estimated from a reduced 
form of the model. This dynamic demand framework was proposed in Houthakker, Verlager, and 
Sheehan (1974) and applied by Bernstein and Griffin (2005) and Rivers and Jaccard (2011), 
among other researchers. It is based on the idea that in the short-term, consumer are limited in 
their abilities to adjust their energy consumption due to costly fixed investments in appliances 
and other energy using equipment.  

Suppose that desired energy consumption (E*) in utility service territory ‘i’ in year ‘t’ is a Cobb-
Douglas function of energy price, income, weather, and population. E* is the consumption that 
would result if energy users could instantaneously adjust their consumption without cost. For 
ease of exposition, we omit the other variables (gas prices, codes and standards, time trend): 

E*
it = g(pe,it, Iit, Wit, EEit, Pit) 

      = eEEitϕpe,it
ξIit

νWit
αPit

φ 

 

If ‘g’ is included in log-linear form, the coefficient on electricity price pe,it represents the long-
term price elasticity of demand. The coefficients on the other variables would also represent 
long-term elasticities. 

However, consumers cannot achieve their desired consumption in each period due to fixed 
investments in appliances and other energy using equipment. To capture this inability, we 
assume that consumption adjusts between years according to the following relationship: 

Eit/Eit-1 = (Eit
*/Eit-1)σ 

 

where Eit is the energy consumption in year ‘t.’ The parameter σ, which is in the interval (0,1), 
indicates the speed with which the adjustment process occurs. A value close to 1 indicates that 
the adjustment is almost instantaneous and consumers can freely adjust their consumption. A 
value close to 0 indicates that consumers are significantly constrained in their ability to change 
consumption and that adjustment is a slow process. 

Taking the natural logarithm of both sides and rearranging terms, we get: 

lnEit = lnEit-1 + σlnEit
* - σlnEit-1

 

      = lnEit-1 + σlnEit
* - σlnEit-1

 

     = σlnEit
* + (1- σ) lnEit-1  (Equation A.1) 
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If we substitute a linear function of drivers of energy consumption in natural logarithmic form 
for desired energy consumption in year ‘t,’ we get: 
        lnEit = σg(pe,it, Iit, Wit, EEit, Pit) + (1- σ) lnEit-1 

         lnEit = σξ ln(pe,it)  + σν ln(Iit) + σα ln(Wit) + σϕ ln(EEit) + σφ ln(Pit) + (1- σ) ln(Eit-1) 

In the above equation, the coefficients ξ, ν, α,  ϕ, and φ are long-term consumption elasticities.    

Making the substitutions σξ =γe, σν= β, σα=ω, and σϕk=δ and adding an error term to the model 
provides our main estimating equation:  

ln(Eit) = γe ln(pe,it)  + βln(Iit) + ωln(Wit) + δ ln(EEit) + (1- σ) ln(Eit-1) + λi + μit   
 (Equation A.2) 

 

The long-term consumption elasticities can be recovered by dividing the estimated coefficients γ, 
β, ω, and δ by one minus the estimate of (1- σ).  

Estimating Market Gross Savings 
We now use the regression framework and results to estimate first year total market gross 
savings, which reflect long-term changes in consumption from energy saving activities. First, 
note that for utility service territory ‘i’ in year ‘t,’ long-term consumption is: 

Eit* = g(pe,it, Iit, Wit, EEit, Pit) 

        = eϕEEit∗pe,it
ξIit

νWit
αPit

λ 

Taking natural logarithms yields: 

ln(Eit*) = ξln(pe,it)  + νln(Iit) + αln(Wit) + ϕEEit + λln(Pit) 

 

Totally differentiating both sides of this equation to express the percentage change in 
consumption as a function of the percentage changes in the independent variables becomes: 

dln(Eit*) = ξd(ln(pe,it))/dpe,it  + νd(ln(Iit)/dIit) + αd(ln(Wit)/dWit) + ϕdEEit + λd(ln(Pit)/dPit) 

                    = ξ(dpe,it/pe,it)  + ν(dIit/Iit) + α(dWit/Wit) + ϕdEEit + φ(dPit/Pit) 

And putting the equation in discrete “delta” form yields: 

Δln(Eit*) = ξ(Δpe,it/pe,it)  + ν(ΔIit/Iit) + α(ΔWit/Wit) + ϕΔEEit + φ(ΔPit/Pit) 

 

This equation outlines how small changes in the independent variables change the percentage of 
long-term consumption as a function of the percentage changes in prices, incomes, weather, and 
population, as well as the absolute change in energy-efficiency expenditures. With estimates of 
the long-term consumption elasticities, we can use the equation to predict the percentage change 
in long-term consumption as a function of the percentage and absolute changes in the 
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independent variables. Specifically, we can multiply the percentage change in long-term 
consumption due to naturally occurring savings and energy-efficiency expenditures by an 
estimate of long-term consumption to estimate market gross savings.  

From Equation A.1, long-term consumption can be estimated as: 

Eit
* = exp((lnEit - (1- σ)lnEit-1)/σ) 

 

where σ would be obtained from the regression estimate of σ in Equation A.2.   

In our simplified model, market gross savings for utility ‘i’ in year ‘t’ would arise from changes 
in energy prices and energy-efficiency expenditures, and would be estimated as: 

Market gross savingsit = Naturally occurring savings from price changesit  
+ energy-efficiency savingsit 

= E*
it *(ξ(Δpe,it/pe,it) + E*

it *(ϕΔEEit))    

    = e(ln(Eit) - (1- σ) ln(Eit-1))/σ ∗ (ξ(Δpe,it/pe,it) + ϕΔEEit) 

 

We would obtain an estimate of ξ and ϕ by dividing the regression estimates of γ and δ by one 
minus the regression estimate of 1-σ. 

If variables for codes and standards and changes in attitudes and awareness are included in the 
model (see the main text), market gross savings for utility ‘i’ in year ‘t’ would be: 

Market gross savingsit = E*
it *[(γe /(1−σ)*(Δpe,it/pe,it) + τ/(1−σ) + (δt/(1−σ))*ΔEEit) + (μ/(1−σ))* 

NCit*ΔCodeit] 

= e(ln(Eit) -  (1- σ)ln(Eit-1))/σ ∗  [((γe /(1−σ))*(Δpe,it/pe,it) + τ/(1−σ) + (δt/(1−σ))*ΔEEit) 
 + (μ/(1−σ))* NCit*ΔCodeit] 

 

To estimate market gross savings in the state in year ‘t,’ we would sum the market gross savings 
over all utilities in the state. 

 


