
Survival Analysis of SCE/CPUC CFL Lab Study

Brett Close

June 4, 2015

Submitted to Miriam Fischlein
Southern California Edison

1



0 Executive Summary

Compact fluorescent lamps have provided a large portion of the savings delivered through Califor-
nia’s energy efficiency programs for over a decade. CFLs, as they are commonly known, owe this
privileged place within the portfolios of California’s Investor-Owned Utilities (IOUs) primarily to
three factors: first, their large improvement in efficiency compared to the incandescent base tech-
nology; second, to their relatively low price premium over the base technology and compared to
other efficient technologies; and third, their vast improvement in life span compared to the base
technology. This report focuses on the third characteristic: the life of the CFL.

The report details the methods and results of an analysis of a CFL Laboratory Study conducted
on behalf of Southern California Edison and the California Public Utilities Commission Energy
Division to test the life times of CFLs with different characteristics under different usage profiles.
The purpose is to understand how those lamp characteristics and usage profiles affect lamp life,
and produce estimates of lamp life for the lamps provided by SCE through its programs. This
analysis is necessary because medians taken directly from the Laboratory Study results do not
provide a meaningful measure of the life of program lamps. They do, on the other hand, provide
a powerful set of information from which careful modeling can provide consistent, efficient, and
valid estimates of lamp technical life.

The analysis models the conditional median life of lamps using a Weibull Accelerated Failure
Time model with an instrumental variables approach. In the first stage, it uses lamp character-
istics that directly affect lamp life and ones that affect lamp life only through their influence on
cycling robustness as instruments in a linear survival model of lamp cycles. Then, in a second stage
it uses the predicted number of cycles and the direct covariates in a Weibull model to explain lamp
life. Marginal effects of characteristics are calculated using finite differences approximations. Due
to the nonlinear and two-stage model, confidence intervals for marginal effects and lamp lives are
based on a Wild Bootstrap.

Various measures indicate the model fits the data well. Particularly, the overall median predi-
cation for the sample matches with an error of 1.7%. The median of a synthetic sample survival
curve is within 10%, and provides a conservative estimate. In both cases, the true values appear
to be within the confidence bounds of the model.

The model is then used to make estimates of the median lamp life for lamps provided by SCE
through its programs. These estimates are based on lamp characteristics and program volumes
reported by SCE and an average cycle time from the 2005 KEMA metering study.

In general, estimates are larger for these predictions than for the values from the laboratory
study because the sample for the study was quite different from the program lamp population.
Specifically, there was a shift away from standard lamps into specialty lamps, which tend to have
a longer life.

Through this intensive modeling process, the significant challenges of the nonlinearity of the re-
sponse and the endogeneity of lamp life and cycles are successfully met in a way that provides a
consistent and efficient estimate of lamp life.
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Recommendations from this research are as follows:

• SCE should adopt the “mean median” lamp hours for the lamp types from Table 5, repro-
duced as Table 1, as planning estimates for lamp EULs.

• SCE should use the model results to estimate lamp lives for the program populations for
newer populations, and use those values for planning purposes.

• The Energy Division should undertake an updated lighting metering study to gather newer
data on average cycle times and average hours of use, and how they correlate with lamp
conditions.

Table 1: Recommended Lamp Life by Lamp Category

Lamp Category Recommended EUL

Basic Spiral 4, 047
Specialty Shape 6, 300
Specialty Controls 4, 414
High Wattage 9, 171

Results reproduced from Table 5
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1 Introduction

Compact fluorescent lamps have provided a large portion of the savings delivered through Califor-
nia’s energy efficiency programs for over a decade. CFLs, as they are commonly known, owe this
privileged place within the portfolios of California’s Investor-Owned Utilities (IOUs) primarily to
three factors: first, their large improvement in efficiency compared to the incandescent base tech-
nology; second, to their relatively low price premium over the base technology and compared to
other efficient technologies; and third, their vast improvement in life span compared to the base
technology. This report focuses on the third characteristic: the life of the CFL. CFLs tend to be
rated between 6,000 and 12,000 hours of use, approximately 6-12 times as long as incandescent
lamps, with 10,000 hours being the most common. But empirical and anecdotal evidence suggests
that the life of a lamp depends heavily on how it is used, and may be significantly lower than rated
life.

This report details the survival analysis conducted on behalf of Southern California Edison (SCE)
of data from the joint CFL Laboratory Study funded by the California Public Utilities Commission
Energy Division and SCE. Why is this analysis necessary? Why not just rely on the empirical sam-
ple median from the laboratory study? The laboratory study was a very important data collection
activity, but there is no reason to expect that a median life from that study directly represents a
relevant median life for use by program administrators or regulators because the sample of lamps
did not directly reflect the mixture of lamps included in utility programs, and the usage profiles did
not directly represent the usage profiles of lamps used by IOU customers. Why can’t the median
from the laboratory sample simply be scaled by some factor? A cursory look at the data from this
study as well as previous studies 123 clearly indicates that cycle time and the number of cycles
experienced by a CFL have a non-linear effect on the technical life. As such, any method that
aggregates the independent variables on the front end will yield a biased result. The median of a
non-representative sample is not a consistent estimator of the median of the population. Further-
more, any analysis that relies on a median as an input will be inefficient because it throws out the
majority of the information; a method that relies on a median from a non-symmetric distribution
will also introduce bias. Biasedness, inconsistency, and inefficiency are generally the three least
desirable characteristics for an estimator to have.

The report begins with a brief overview of the history of the study and a description of the
relevant technical characteristics of CFLs. Section 2 describes the basic statistical theory of sur-
vival analysis and the methodologies implemented in this study. Section 3 describes the data used
and descriptive results from the laboratory study. Section 4 presents results from the analysis in
terms of the marginal effects of lamp characteristics and model fit to the data. Section 5 provides
predictions of lamp life for lamps promoted through the SCE Upstream Lighting Program. That
is, results in Section 3 are observational in nature, and are not based on modeling; results from
Section 4 show the results of modeling on the laboratory sample; and results in Section 5 use the
model to provide projections for lamps outside the laboratory sample. Section 6 provides conclu-

1Ji, Yunfen, Robert Davis, and Weihong Chen. ”An Investigation of the Effect of Operating Cucles on the Life
of Compact Fluorescent Lamps”. 1998 IESNA Annual Conference, Paper No. 35.

2National Lighting Product Information Program (NLPIP). ”Specifier Reports: Screwbase Compact Fluorescent
Lamp Products”. Volume 7, Number 1, June 1999.

3US EPA. ”Durability Testing for ENERGY STAR R© Residential Light Fixtures”. April 30, 2003. Submitted
by Lighting Research Center, Rensselaer Polytechnic Institute.
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sions and Section 7 provides recommendations from the research.

1.1 History of the Study

SCE has been working with the CPUC Energy Division and its consultants on a study of CFL
switching effects on technical survival since 2009, and data collection continued through 2014.
Previous studies of CFL survival based on usage characteristics suffered from two primary faults.
First, the samples used were small in the total number of lamps, the number of lamps in each
category, and the range of usage conditions tested. The analysis of the data from these studies
relied primarily on taking sample medians for each group. Additionally, lighting technology has
changed significantly over the last 20 years, and drawing conclusions about current products based
on older data is unlikely to be valid. The study addresses the limitation of the previous work in
three ways, including 1) collection and use of data from recent CFL population promoted by the
statewide IOU programs, 2) using a large and diverse sample of lamps subjected to a wide range of
operating characteristics, and 3) implementing improved data analysis models given the improved
level of data collected.

1.2 Brief Technical Overview of CFLs

Compact Fluorescent Lamps emit light by exciting mercury gas with an electrical current. This
is the source of both their improved efficiency and increased durability compared to incandescent
lamps. Incandescent lamps operate by passing current through a metal filament to heat it suf-
ficiently to glow with enough brightness to provide illumination. This means that the majority
of energy is used to produce radiation outside the visible spectrum (which is why incandescent
lamps are so much hotter than CFLs), and that an incandescent lamp fails when the filament
breaks. CFLs on the other hand produce a narrow spectrum of light, which is then absorbed by
phosphors in the coating on the lamp’s tube and re-emitted as a spectrum designed to have some
set of desirable qualities.

In order to create the current flow through the mercury gas, CFLs need to provide sufficient
current and voltage. This leads to the two primary failure modes for CFLs. The first is that the
electrodes in the tubes can fail, the second is that the ballast can fail. Because common CFLs have
the tube integrated with the ballast, the failure of either leads to the failure of the whole lamp, in
contrast to linear fluorescents in which the lamp and ballast tend to be separate.

2 Methodology

The fundamental question when considering the effective useful life of an energy efficient measure
in a California energy efficiency program is what is the conditional median survival time of the
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measure. We are interested in the median because CPUC policy dictates the median as the defi-
nition of the life of a measure, but on a deeper level this makes sense because the distribution of
measure lives is often non-symmetric and with a long tail. That means that a small number of
individual measures may last much longer, making the estimation of the mean difficult in practice
because the mean relies on the value of every member of a population (so data have to be collected
until all the measures have failed). The median, on the other hand, is the time at which half
the lamps have failed. So, in principle, the median can be easier to estimate because it does not
require waiting until all the lamps have failed.

We care about the conditional median because we want to know how measures with different char-
acteristics perform. These characteristics include the technical characteristics of any equipment
involved (e.g. the wattage and other characteristics of the lamp), as well as the usage character-
istics (e.g. where, how, and how often it is used). The conditional median is more difficult to
estimate than the unconditional median because it requires more modeling, but it allows us to
project the conditional median of measures outside the sample in a way that would be impossible
for the unconditional sample median. That is, based on our sample and modeling we could predict
the median life of a measure that was not included in the sample of data, either in terms of lamp
characteristics or usage characteristics, but there is no reason to expect that the median life of a
lamp outside the sample would be the same as a lamp in the sample because the sample is not
representative of real-world conditions. That is, the conditional median provides external validity,
whereas the unconditional median lacks external validity.

The final piece of the fundamental goal is the survival time. Data about lamp failure have a
peculiar structure (discussed more in-depth below) that requires special analytical techniques.
The traditional analytical approach for questions of “time to event” (i.e. the time until a lamp
fails) is survival analysis. Survival analysis is a set of tools for duration data that incorporates
both time-to-failure information as well as censoring time for study participants that do not fail
(or have not yet failed).

Thus, the analysis is based on modeling of lamp life and then using the model to estimate the
median for relevant measure characteristics. To be clear, this estimate will not produce the true
effective useful life of a lamp. The true EUL is based not solely on the technical life of the lamp,
but on how long the savings of the measure persist. That is, it is the time until the lamp fails,
or is removed because it has become too dim, the tenants of the space want a newer technology,
it is broken by an errant football thrown in the living room, or ceases to provide energy savings
for any other reason. As such, the median technical lamp life provides an upper bound that may
reasonably approximate the true effective useful life for most circumstances.

2.1 Overview of Survival Analysis

Survival analysis is a well-developed set of analytical tools for dealing with time-to-event data
based on the special structure of this type of data. This subsection will describe the nature of the
data and then explain the basic characteristics of techniques involved in survival analysis.
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2.1.1 Time-to-Event Data

Consider a CFL burning in a socket. In principle it could fail at any time. Thus it is useful to think
of the lamp facing a hazard of failure at any point during its operation, but once it has failed it
cannot fail in the future because it is removed from operation. The hazard it faces at any moment
is the likelihood of it failing at that moment, conditional on the fact that it has survived until
that time. Notably, the hazard for a lamp type at a given time is different from the probability of
failure for a lamp type at that time. If we think of this issue in terms of the distribution of failure
times for a population of similar lamps, we can rely on the cumulative distribution function, F (t)4

as the chance that the lamp will fail at a time less than equal to t. That is,

F (t) ≡ Pr(Ti ≤ t) =

Ti∫
0

f(t)dt, (1)

where Ti is the failure time and f(t) is the probability density function of the failure time. Because
every lamp fails only once, the survival function, S(t) is

S(t) = 1− F (t), (2)

the likelihood of failing after time t. Then the hazard function, h(t) is,

h(t) ≡ Pr(Ti = t|Ti ≥ t) =
Pr(Ti = t)Pr(Ti ≥ t|Ti = t)

Pr(Ti ≥ t)
=
Pr(Ti = t|Ti ≥ t)

Pr(Ti ≥ t)
=
f(t)

S(t)
, (3)

where the first equality after the equivalence is from Bayes’ Theorem, and the second one is because
Pr(Ti ≥ t|Ti = t) = 1 by definition. Next, note that by differentiating S(t) in Equation 2 with
respect to t we find,

∂S

∂t
= −f(t), (4)

because the partial derivative of the cumulative distribution function is the probability density
function. So given any of the four functions, F (t), f(t), S(t), or h(t) we can find any of the others.

An additional wrinkle in the data is that we often do not have the failure time for all mem-
bers of the sample. Specifically, for any lamp that has not yet failed, we don’t know its failure
time, only that has survived at least until now. That is, we know its failure time is something
greater than its current time, in this case called its censoring time. We then say that its failure
time is censored, meaning that we believe it has a failure time, and we do not know what it is.
Thus for the sample we have either a failure time or a censoring time.

2.1.2 Survival Analysis Methods

There are three categories of methods in survival analysis: non-parametric, semi-parametric, and
parametric. The Kaplan-Meyer method, as non-parametric survival analysis is known, looks at the
information for each study participant and constructs a survival curve and non-parametric survival

4In what follows, t is used to represent the time variable and Ti represents the failure or censoring time observed
for an individual lamp.
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function, where these are based on the observed failure times in the sample. The advantage of this
method is that it does not rely on any assumptions about the distribution of the effects. The dis-
advantage is that it cannot incorporate any covariates as part of the analysis, except as sub-setting
characteristics. As such, it is descriptive, but not useful for extrapolating directly to the population.

The primary semi-parametric methodology is the Cox Proportional Hazard Model, also known
as the Cox Partial Likelihood Model. It incorporates a non-parametric baseline hazard condition
with a parametric assumption about how the covariates (characteristics of the lamps and the test
conditions) proportionally scale the underlying baseline hazard. It has the major advantages of
requiring few assumptions about the distribution of failure times, and providing estimates of the
marginal effects of the covariates on lamp life. The Cox Proportional Hazard Model is the most
commonly used in the social sciences.

The final group is parametric models, most of which are in a class known as Accelerated Failure-
Time (AFT) Models. These models rely on a regression-like framework to model the failure time
of lamps based on covariates. They rely on the assumption that all lamps have the same basic
survival function, but that covariates have the affect of accelerating or decelerating the effective
time. That is, S(t) (and thus F (t), f(t), and h(t)) has the same shape for each lamp, but the time
scaling varies based on lamp characteristics and usage. This allows for specific estimation of the
marginal effects of the covariates and predictions out of the sample. While it requires assumptions
about the form of the distribution, fortunately there are very flexible distributions that make this
requirement relatively innocuous compared with other assumptions required in evaluation of en-
ergy efficiency programs. And, as we’ll see in Section 4, the Weibull model appears to fit the data
very well.

Unfortunately, while lack of a parametric assumption for the hazard function in the Cox Propor-
tional Hazard Model is desirable, the model relies heavily on the proportional hazard assumption
as the model parameters are identified by comparing the characteristics of lamps remaining in the
risk set at each time. For this study, a test of the proportional hazard assumption indicated it is
very unlikely to hold for some variables. While the Weibull model used in the analysis enforces
a proportional hazards assumption, identification comes from modeling the failure time directly,
rather than conditioning on the proportional hazard. Additionally, accelerated failure time mod-
els are better suited to making out of sample predictions and more fully reflect information from
censored members of the sample. Because the Weibull distribution appears to fit the data well,
this parametric structure is a justified tradeoff compared to the proportional hazards assumption.

2.1.3 Accelerated Failure Time Models

Let’s return to the basic framework developed in Section 2.1.1. For each lamp we have an associated
failure time or censoring time, Ti. Then, based on whether the lamp time is a failure or a censoring
time we can associate a new variable Ci defined as

Ci =

{
1 if lamp i has failed
0 if lamp i has been censored

. (5)
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Then, assuming all lamp’s failure times are independent (i.e. a lamp going out or staying on
doesn’t effect whether any other lamp fails or stays on), we can define the likelihood for the whole
sample as,

L =
N∏
i=1

[f(Ti)
Ci ] ∗ [S(Ti)

1−Ci ], (6)

where N is the total number of lamps, such that for each lamp we rely on one contribution to the
likelihood because every lamp has either Ci = 1 and 1− Ci = 0 or 1− Ci = 1 and Ci = 0. Lamps
that failed enter through the distribution directly and censored lamps enter through the survival
function. Because the likelihood is monotonic, it is maximized by the same value that maximizes
its log. So we define the log-likelihood, L as,

L = ln(L) =
N∑
i=1

(
Ci ∗ ln(f(Ti)) + (1− Ci) ∗ ln(S(Ti))

)
. (7)

Then, given a flexible parametric specification for f(Ti) (and thus S(Ti)), we can estimate the
effects of the covariates on lamp survival by maximizing the log likelihood, and thus the likelihood
of observing the sample that we did in fact observe.

In an accelerated failure time model, the form for the hazard rate is given for each lamp, and
varies among lamps with different characteristics. One of the most common practices is to specify
a Weibull distribution for the life of the lamp, leading to a hazard of the form,

h(t|Xi) = exp(X ′iβ)αtα−1, (8)

where Xi is a vector of covariates (including a constant term), α is the shape parameter of the
distribution and exp(X ′β) is the scale parameter. As we saw above, given a hazard rate, we can
determine the density function and survival function and thus calculate the log likelihood and
estimate of β by maximum likelihood.5

Note that, as was mentioned previously, the effect of the covariates is to change the hazard rate
between lamps, keep it constant for lamps with the same characteristics at a given time, and let it
vary over time. Two reasons for this specification are its relative flexibility, and that it is positive
for all values of Xi and β (as is necessary for survival times). Since the exponential model is nested
in the Weibull model (with α = 1), the restriction of the model to the exponential model can be
tested directly. Other distributional assumptions, such as log-logistic and log-normal, are used at
times, but the Weibull model was selected here for its flexibility and the fact that it allows the
hazard to rise over time, as we expect for lamps that undergo stress during operation. It also
appears to fit the data in this study quite well on average.

2.1.4 Coefficients, Marginal Effects and Standard Errors

As is common in non-linear models (and different from linear models), the marginal effect of a
change in a covariate is not equal to the coefficient parameter. Instead, the coefficient parameter

5The model can also be thought of in a regression-like setting with a model of the form, αln(Ti) = −X ′iβ + ui,
where ui is distributed type one extreme value. But due to censoring, this still must be estimated by maximum
likelihood.
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reflects the hazard ratio for two lamps that differ only in one characteristic. That is, for two lamps
i and j at time t that differ only in characteristic k, the hazard ratio is,

HRi,j =
hi(t)

hj(t)
=
exp(X ′iβ)αtα−1

exp(X ′jβ)αtα−1
=
exp(X ′ikβ)exp(X ′i,−kβ)

exp(X ′jkβ)exp(X ′j,−kβ)
=
exp(X ′ikβ)

exp(X ′jkβ)
= exp((Xik −Xjk)

′β).

(9)
In the two-stage model, the interpretation of the coefficients becomes a bit more difficult due to
the dual effect covariates can have directly on the outcome and through the endogenous regressor
as instruments. Because of this issue, the marginal effects in the model are calculated numerically,
as discussed below.

Additionally, in a standard maximum likelihood model, the covariance matrix from which stan-
dard errors are calculated is just the inverse of the information matrix. In this case, because
the instrument is a calculated rather than fixed covariate, this method does not work. Instead, I
estimate confidence intervals from a bootstrap without calculating standard errors, as discussed
below.

2.2 Model Estimation

The survival analysis in this report relied on an intensive process of model development. This
began with a general investigation of functional forms, continued with an enhanced 2-step model,
followed by a model selection process. Once the final model was selected confidence intervals were
estimated using bootstrapping and median lives were estimated.

As discussed above, the Weibull distribution is the most common distribution assumed for survival
analysis models. Other commonly used distributions include the normal, log-normal, logistic, and
log-logistic distributions. Results for general models including a selection of the lamp character-
istic were compared and the Weibull model had a better fit to the data in terms of log likelihood
(for the exponential distribution, which is a nested model of the Weibull) and in terms of the
fit of the model for the normal, log-normal, logistic, and log-logistic models. Model convergence
with the generalized gamma distribution, a more flexible generalization of the Weibull distribution,
was very challenging due to the increased complexity of the distribution and likelihood function,
leading to a lack of confidence that results for the generalized gamma model were true maximum
likelihood results. For these reasons, the Weibull was retained as the distribution for the modeling.

With the distribution selected, the focus of modeling moved to selecting the best lamp char-
acteristics to include. Certain covariates did not show up as statistically significant in any of the
models tested and were not considered for a final model. For the remainder, models were com-
pared, as discussed below in Section 2.2.2.

2.2.1 Endogeneity

A fundamental challenge of the modeling exercise is to use the information coming out of the
laboratory study as effectively as possible in a way that is possible to apply to lamps outside the
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sample. This is because the number of cycles a lamp survives is a powerful predictor of its life,
but the number of cycles a lamp will survive is not observable for individual lamps that aren’t
tested. In a fundamental way, lamp life and lamp cycles are jointly determined, and lamp cycles
are endogenous to the estimation of lamp life. Simply leaving lamp cycles out of the model leads
to models with significantly less explanatory power, so a method to include that information is
necessary. This endogeneity makes sense when one considers how CFLs operate and how they fail.
CFLs face hazard of failure both from operation and from start up: the current running through
the electrodes and the tube degrades the lamp, as does the sharp voltage spike and rapid heating
that occur when a lamp is first lit. It is this second source of degradation that leads lamps with
different cycle times to have such vastly different life times.

Luckily, there are well established methods for dealing with endogeneity, primarily the method
of instrumental variables. This method is a two-step method in which the endogenous variable is
modeled in the first step as a function of the other explanatory variables from the main model and
additional variables that help explain the endogenous variable but the not the variable of interest,
and then the fitted value for the endogenous variable is used in the main model in place of the
observed value. That is, the number of cycles is modeled first with a larger selection of variable,
and then a predicted value for the number of cycles, which we can think of as cycling robustness, is
used in the model for lamp life. The additional variables in the first stage, known as instrumental
variables, are necessary for identifying the model based on variation in the data, rather than the
parametric form of the model.

While this technique is most commonly used in least squares models, it is valid in a larger class of
models that includes the maximum likelihood models used in survival analysis. For example, the
Heckman Selection Model, a very common method in social sciences that won James Heckman the
Nobel Prize in Economics, relies on a maximum likelihood estimate in the first step. The Heckman
Selection Model was developed specifically to address this problem of endogeneity. What we need
for the two-step model to be consistent is that the both the first and second steps are consistent
themselves, which is true in this case. That is, this is a perfectly common and legitimate procedure.

The two-step model follows a common structural modeling approach with a modification. The
number of cycles is modeled as a flexible polynomial series function of the explanatory variables
and instruments in the sense that the model is treated as a series approximation of the true model.
Because of the censoring of the data, a pure linear least squares model would not be a consistent es-
timator of the number of cycles, so a normal (i.e. Gaussian) survival model is used to estimate the
first stage. Then predicted values from the first stage are used in the Weibull model of the lamp life.

2.2.2 Model Selection

The final model selection was a question of which covariates to include in the second stage model.
As long as the first stage contains relevant explanatory variables and instruments, there is no
need to limit the number of included regressors as efficiency of the model parameters is not a
concern, nor was overfitting; all that matters is removing extraneous variation. The final cycling
model has an R2 value of approximately 0.56, which is quite high considering the amount of vari-
ation amongst lamps with the same characteristics. Because of the design of the study, there are
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approximately five lamps of the same type (that is, with all the same lamp characteristics) run
under the same cycle. So the best possible model could only predict the mean of a group, not the
value of an individual lamp. By taking lamp type averages the R2 of best possible hypothetical
would be 0.71. So the cycling model has an effective R2 of 0.79, that is, it explains 79% of the vari-
ation of the best possible model compared to the most simple model using the overall sample mean.

Model selection was based on both the two-step model, and a base model of just one step, where
the observed values of the lamp cycles were used in place of the predicted values, but the form
of the equation otherwise followed the second step of the two-step model. This was in order to
consider both external and internal validity. The final second stage model was selected among
three competing models, one, Model 1, which included all variables that were at least marginally
significant in a single stage model with actual cycles, one, Model 2, that included variables that
were significant near the 95% level, and one, Model 3, that only included variables that were
significant above the 99% level. The final model was selected based on parsimony (including the
fewest possible number of regressors to achieve the same fit), model fit to the data, and external
validity, with the most emphasis put on the last. This was assessed using hold out samples, also
known as k-fold cross-validation.

The method was a follows. The sample was randomly partitioned into 4 groups (i.e. k = 4
here). Then each of the models was estimated on each subset of the sample with one group miss-
ing. Predicted values were then calculated for each observation based on the model that excluded
it. Six measures were then calculated for each of the models: the average prediction error, the
average absolute value of the prediction error, and the square root of the average of the square of
the prediction error (i.e. the RMS prediction error), each for the whole sample and for the portion
of the sample that had actually failed. The average prediction error is the least important, but
indicates how skewed the distribution of errors is (because these are nonlinear models, prediction
errors are not mean-zero even in the full model). The average absolute value treats all errors
equally and will favor a model that predicts medians well.6 As the object of interest in this study
is a median, this is desirable. The RMS prediction error puts more emphasis on very large predic-
tion errors, which are undesirable. These were calculated on the whole sample and the subsample
that had failed because the predictions would not be expected to be correct for the lamps that did
not fail.

Each of these measure were calculated for the single-step version of the model, as well as the
two-step version of the model. Results are shown in Table 2.
While Model 2 slightly outperforms Model 1 in some measures for the base model, Model 1 is
optimal in the two-step model by every measure. For this reason, Model 1, the model with the
most complete set of explanatory variables in the second stage, was chosen.

2.2.3 Confidence Intervals

A significant drawback of the two-step model is that the typical asymptotic standard errors that
are easy to calculate are no longer valid. This is because asymptotic standard errors require that

6While ordinary least squares will yield a model that fits the mean of the data, a least absolute deviations model
will fit the median of the data.
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Table 2: Model Cross-Validation Results

Base Two-Step
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Mean Residual -3, 194 -3, 182 -3, 198 -1, 919 -1, 943 -1, 960
Mean Absolute Residual 3, 485 3, 475 3, 491 3, 601 3, 621 3, 635

RMS Residual 13, 838 13, 733 13, 820 6, 318 6, 342 6, 526
Mean Residual (Failed) -614 -616 -618 -2, 243 -2, 264 -2, 279

Mean Absolute Residual (Failed) 942 945 948 3, 221 3, 237 3, 245
RMS Residual (Failed) 3, 091 3, 088 3, 132 5, 460 5, 487 5, 610

the sample be independent. With a two-step model, the calculated value for the cycles is no longer
independent as the predicted value is dependent on the sample.

One way to address this is through an adjustment in the information matrix used to calculate
the variance matrix. This is difficult and tedious. A better method, employed here, is to estimate
confidence intervals from the bootstrap, rather than from asymptotic standard errors.

The bootstrap relies on resampling to develop a consistent estimate of the distribution of rele-
vant parameters of a model. While the most common bootstrap techniques resample from the
empirical distribution function of the data, this is inefficient in a setting with an experimental
design where random assignment creates independence of the error term and covariates. The best
and most common solution is to use what is known as the Wild Bootstrap.

The Wild Bootstrap maintains the same experimental design matrix but resamples from the residu-
als in a way that preserves the first two moments of the distribution of the residuals. This maintains
the key characteristics of the error structure that make the experimental design so desirable, while
still allowing for an investigation of the distribution of relevant parameters. This procedure is
again carried out in two steps. For each bootstrap replication, each observation is randomly as-
signed either a negative or positive shock to its residual from the cycling and the survival models7,
and the bootstrap values of the cycles and life of each lamp are then calculated as the predicted
value plus the altered residual. The cycling model is then evaluated based on the original design
matrix and the bootstrap cycling value. This bootstrap cycling model is then used to predict the
cycling value that is used in the survival model with the original design matrix and the bootstrap
survival time. This process is repeated a total of 9,999 times, and then confidence interval for the
parameter estimates can be estimated from the distribution of bootstrap values of the parameters.8

7The residual from the cycling model is not the difference between the actual and the predicted values, which is
not mean zero, but a modified value based on the form of the survival model.

8An additional advantage of the bootstrap is that it allows us to adjust the original parameter estimates in
addition to calculating confidence intervals. Although the survival analysis models are unbiased, there will be
deviations within any sample from the true value. The mean values of the parameters from the bootstrap distribution
can be used to correct for small-sample deviation from the true model parameters.
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2.2.4 Estimation of Median Life

Although the model is formulated to estimate a conditional mean, estimation of conditional me-
dians (or any quantile of the distribution) in a Weibull model is very simple. In general, for
something whose expected life is distributed Weibull with mean life µ and scale factor σ, time at
which q% have failed is,

T (
q

100
) = µ(−ln(1− q

100
))

1
σ . (10)

Then the median life is just,
Median = µ(−ln(.5))

1
σ . (11)

3 Data

This section describes the data used for this analysis. This first part discusses the preparation and
cleaning of the data. The second presents some key qualitative findings that come directly from
the data.

3.1 Description of Laboratory Experiment

The experiment was designed to test the dependence of lamp life on lamp characteristics and op-
erating conditions. This design was developed collaboratively between SCE and the CPUC’s Data
Management and Quality Control (DMQC) group. A designed sample of lamps were to be pro-
cured and then operated under specified conditions until failure. A subsample of lamps would also
be tested periodically to determine how the true (as opposed to rated) wattage, color rendering
index, color correlated temperature, power factor, and lumen output changed over time.

The sample was designed to represent the diversity of lamps available through the IOU upstream
lighting programs and through the market at the time the study began in 2010. It was not, on the
other hand, designed to be representative of the program distribution of lamps. Instead, it was
designed to cover the relevant types of lamps offered through the programs or otherwise available,
but with the distribution designed to be able to detect effects, rather than to allow for direct
extrapolation to the population. It also included non-Energy Star lamps, which are not available
through the programs, to test for difference in durability between Energy Star and non-Energy
Star lamps.

The design of the sample to detect effects relevant to IOU program lamps required a number
of characteristics. First, lamps were selected to have a wide variety of characteristics, and combi-
nations of characteristics representative of IOU programs, but not to represent the mix of lamps
themselves. This increases the ability of statistical methods to model the effects of these char-
acteristics and combinations of characteristics. Second, we wanted a large enough sample to be
able to achieve reasonable confidence and precision, and to be able to have multiple lamps of each
type with each of the assigned treatments in order to be able to observe the variability among
lamps of the same type. Similarly, the cycling regimes were designed to detect effects, rather than
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represent the population. The times selected were fixed 2-, 5-, 15-, 30-, 45-, 60-, 90-, 180-, and
720-minute cycles and a variable cycle with an average on-time of 30 minutes. The distribution
for the 30-minute variable cycle followed the distribution of average on-times for the 2005 CFL
Metering Study.9 Therefore, both specialty lamps, and extreme cycle times were over-sampled
relative to the population. This makes good sense given the problems with direct extrapolation
discussed above.

For more information about the design of the experiment, consult the report from the CPUC
DMQC.10

3.2 Data Preparation

The data from the lab experiment were delivered in a cleaned and usable form, but not the neces-
sary form for this analysis. The data include individual lamp-level data on time of failure if failed,
lamp characteristics, including type (spiral, reflector, globe, A-lamp), control (standard, dimmable,
three-way), Energy Star status, wattage, lumens, rated life, and experiment usage characteristics
(base up, average cycle time, high or medium power for 3-way lamps).

The dependent variable, failure/censoring time, was created by setting it to the failure time if
the lamp had failed or to the total operation time for the cycle on which the lamp was operating.
Likewise, the failure variable was set to 1 if it had failed, and 0 if it had not. This allows the R
statistical software, in which the analysis was conducted, to create a formatted data set appropri-
ate for survival analysis.

The categorical variables were each converted into dichotomous variables to indicate the pres-
ence of the specific attribute. For lamp control, dummies were created for dimmable, 3-way high,
and 3-way medium to indicate whether the lamp was dimmable, 3-way and operated as a regular
lamp, or 3-way and operated on the middle power setting. Dummies were also created for reflec-
tor, globe, and A-lamp types. Standard control and spiral were not designated to avoid perfect
collinearity in the data matrix.

As the data were periodically updated over the course of the study, the data sets were recon-
ciled between each version and differences, such as failure time changing for an already failed
lamp, were investigated to ensure data quality.

3.3 Description of Laboratory Results

This section describes some of the qualitative results with respect to lamp life that came out of the
laboratory study. Figures in this section present the empirically observed failure times for lamps

9”CFL Metering Study”. Kema-Xenergy. February 2, 2005. Available at:
http://calmac.org/publications/2005 Res CFL Metering Study Final Report.pdf

10”CFL Laboratory Testing Report Preliminary Results from a CFL Switching Cycle and Photometric Laboratory
Study”. James J. Hirsch and Associates, and Erik Page & Associates, Inc. Submitted to the California Public
Utilities Commission Energy Division, May 21, 2012.
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Figure 1:

in the study. That is, there is no modeling involved with the survival curves presented here. The
curves show the percent of the sample surviving as a function of the run hours. Therefore, a curve
that lies above another curve at a point has more lamps surviving at that point, and a curve that
lies above another curve at all points beyond zero represents lamps that lasted unambiguously
longer conditional on the sample selected and its operating conditions but not the other lamp
characteristics.11 Kaplan-Meyer confidence bounds are included only for two-way comparisons in
the interest of readability.

As expected, the cycle time of the lamps shows a very clear effect on the life of the lamp, as
shown in Figure 1. Cycle time has a strong effect on lamp life throughout the distribution of the
sample, as well as at all values of the cycle time. That is, for example, the very first short-cycle
lamps died before the very first long-cycle lamps, and there are significant increases in lamp life
going from 2 minutes to 5 minutes, as well as from 180 minutes to 720 minutes.

The effects of rated life on lamp life are less clear, as shown in Figure 2. While there is a clear
and expected relationship between lamps rated at 6,000 hours, 8,000 hours, and 10,000 hours,
lamps rated at 12,000 hours initially perform better than the others, but then decline somewhat
drastically and settle close to the value for 8,000 hour rated lamps in the tail of the distribution.
As this occurs after the median life of the lamp, this does not necessarily indicate problems with
the lamp testing.

Perhaps the more surprising result come from a comparison and ENERGY STAR and non-

11That is, just because the lamps of one category in this study lasted unambiguously longer than another group,
does not mean that all lamps of this category would last unambiguously longer than the other.
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Figure 2:

ENERGY STAR certified lamps, shown in Figure 3. Non-ENERGY STAR lamps actually had
longer lives throughout most of the distribution. Considering the pointwise 90% confidence bands
for the Kaplan-Meyer survival functions indicates that, while the sample size for non-ENERGY
STAR lamps was much smaller, this difference appears to be real.

Another notable result is the difference between standard and specialty lamps. Standard lamps
are spiral lamps with regular controls and wattage less than 30W; specialty lamps have a different
shape, different controls, and/or higher wattage. The results are shown in Figure 4. Once again,
specialty lamps appear to last longer than standard lamps at all parts of the distribution, and the
difference appears to be statistically significant in most of the distribution.

One major surprise was that the lamp orientation, base up vs. base down, did not show up
as significant in the various specifications tested. There has been a lot of anecdotal evidence and
discussion that many CFLs die prematurely because of being used in a base up orientation. There
is not evidence from this study to support that idea. The Kaplan-Meyer survival curves for lamps
in these two groups are shown in Figure 5. Based on the commonly perceived impact of base ori-
entation, this result is quite striking. These two groups are nearly indistinguishable at all points in
the distribution, and nowhere are they statistically distinguishable. Recall that the Kaplan-Meyer
survival curve is not a modeled curve, it is drawn directly from the data. A test of the hypothesis
that the hazard rate is equal at all times throughout the distribution fails to reject the null even
at the 80% confidence level.
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Figure 3:

Figure 4:
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Figure 5:

4 Results

This section discusses the results of the survival analysis and model predictions within the sample.
The first subsection discusses the marginal effects implied by the model. The second subsection
presents results on how well the model predictions fit the sample data for various important lamp
categories, showing results based on various averages for lamp shape, control type, and cycle time.
The final subsection presents the model fits for the entire sample, considering various ways to
estimate that. All the analyses in this section deal with lamps observed in the sample.

4.1 Marginal and Incremental Effects

Marginal and incremental effects indicate the change in the average lamp life that the model pre-
dicts would occur if the characteristics of a lamp changed. In a linear model, the marginal and
incremental effects are simply the coefficients of the model, and are by construction constant across
all ranges of the lamp characteristics. Two significant implications of the nonlinear model used
here are that the model coefficients are not directly interpretable or meaningful without further cal-
culation, and that marginal effects must be calculated and vary based on lamp characteristics. For
this reason, I do not present model coefficients. Instead, I present marginal and incremental effects.

Additionally, because this is a nonlinear model with an exponential form, it contains all inter-
active effects between included variables. To see why, consider a simplified model, with just two
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characteristics and no intercept, of the form,

E[Ti|x1, x2] = exp(ax1i + bx2i). (12)

Then the change in expected life in going from x1 to x′1 is exp(ax′1 + bx2)− exp(ax1 + bx2), which
is different for different values of x2. For this reason, the marginal effect of an interaction between
variables is even less well defined that the marginal effect for a single variable. All the interactive
terms were significantly different from zero with 90% confidence in the first-stage cycling model.

Both marginal effects (those for continuous variables) and incremental effects (those for categorical
variables) in a nonlinear model can be calculated analytically by taking the partial derivative of
the expected value of the dependent variable. But in this two-step model, the partial derivative
is somewhat burdensome to calculate for computational reasons due to the fact that variables
can impact the outcome directly in the second stage, as well as indirectly through the predicted
cycle time in the first stage. Instead, I estimate the marginal effect by taking a finite differences
approximation, that is, calculating the predicted value at two values of the target variable while
holding all other constant, and then dividing the difference in the predictions by the difference in
the input. Incremental effects are calculated by taking the difference in the predicted values.

As mentioned above, marginal effects for one variable depend on the values of the other vari-
ables in the model. Following the standard practice for nonlinear models, I’ve held the other
values at their mean value. Such an “average” lamp does not exist, and includes non-sensical
values for the categorical variables, such as roughly 0.07 A-lamp and 0.92 ENERGY STAR cer-
tified. The goal is to calculate values that are indicative of the change in lamp life for lamps
given a change in their characteristics, while understanding that the actual predicted change will
be different for lamps with different sets of characteristics. For lamp type and control, I used
the average values for lamps with those characteristics. For example, the estimate for A-lamps is
based on the predictions for an A-lamp with average wattage, lumens, and rated life but no other
specialty characteristics compared to a non-A-lamp with the same wattage, lumens, and rated life
and no other specialty characteristics. For the value of the cycling time, I selected the variable
cycle, as that is closest to the average conditions found in the actual usage. Results are shown in
Table 3. Confidence limits are based on the results of the bootstrapping procedure described above.

As expected, the rated life of a lamp has a statistically significant positive effect on its life. For an
average lamp, increasing the rated lamp by one hour would increase the life by about one and a half
hours, holding all other characteristics constant. Similarly, increasing the wattage by one watt,
while holding all other characteristics including the lumens constant, increases the life of an average
lamp by about 725 hours. Increasing lumens by one lumen, on the other hand, again keeping all
other characteristics including wattage constant, decreases the average life by about seven and a
half hours. A-lamps, reflectors, and 3-way lamps do not appear to have a statistically significantly
different life compared to other similar lamps. Globes, candles, and dimmable lamps appear to have
significantly longer lives. ENERGY STAR-certified lamps appear to live statistically significantly
shorter, although the effect is not large. This likely indicates that part of the effect in Figure 3 is
due to other lamp characteristics correlated with whether a lamp is ENERGY STAR certified or
not. The result for dimmables is quite surprising. While dimmables lived significantly longer in
the sample than non-dimmables, the difference was not nearly as great as the incremental effect
indicate, an increase of roughly 1, 700 hours in life compared to other similar lamps. The large
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Table 3: Marginal and Incremental Effects for an “Average” Lamp

Lower Confidence Limit Marginal/Incremental Effect Upper Confidence Limit

Rated Life 1.00 1.47 1.93
Wattage 493.53 727.83 952.65
Lumens -10.52 -7.57 -4.43
A-Lamp -615.61 498.45 1, 976.34
Globe 1, 920.57 3, 544.15 5, 051.22
Candle 2, 356.17 5, 323.82 7, 998.00

ENERGY STAR -1, 488.45 -690.85 208.66
Reflector -199.32 619.35 1, 601.43

Dimmable 1, 216.67 1, 755.17 2, 316.61
3 Way −2, 703.40 -819.00 920.55

90% confidence interval based on Bootstrap with 9,999 replications

value is likely due to the interactive effects between dimmables and other characteristics being
particularly strong in the average range.

4.2 Model Fit

The present subsection provides results on the model fit for various groups of average lamps.
Subsubsections cover lamp shape, controls, and cycling times. The model fit considered is the fit
between the nonparametric Kaplan-Meyer survival function observed in the data, and the model
prediction of the survival function. That is, it compares the percent surviving in the sample at any
time with the model’s prediction of the percentiles of the survival function. As with the marginal
and incremental effects of the previous section, these results are based on average lamps, rather
than the full sample of relevant lamps. The reason for this is that while for large groups of lamps,
we see a good representation for the survival function, this is not possible to do at the lamp group
category. That is, with 251 A-lamps we can get a sense of the survival function, but with only five
lamps of a given type, it is impossible to know which percentiles to predict.

4.2.1 Lamp Shape

Figures 6 through 8 show the fit results for various lamp shapes. Candles were omitted as the
sample size of 100 was so small that the confidence bounds on the Kaplan-Meyer estimate are too
large to make a comparison very meaningful. For this and the following subsubsection, cycling
regimes are restricted to the 30 minute variable regime.

In each case, the fit is quite good, with the predicted survival curve for the average lamp being
within the 90% confidence bounds well over 90% of the time.

4.2.2 Controls and ENERGY STAR-Certification

Figures 9 and 10 show the results for 3-way and dimming controls.
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Figure 6:

Figure 7:
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Figure 8:

Figure 9:
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Figure 10:

Again, the fit is quite good and within the confidence bounds well over 90% of the time. The
model appears to have had trouble fitting the relatively steep drop and long tail of the dimming
lamps. It should be noted that the result for dimming lamps is based on the lamp operating in the
dimming model and the result for the 3-way lamp is for the lamps running in the medium setting.
No significant effect was found for 3-way lamps tested in the high setting. As such, these estimates
likely overstate the true life of these lamps as they are unlikely to be operated below full capacity
all the time.

Figure 11 shows the results for ENERGY STAR certified lamps. The fit is not as tight in this
case, as to be expected for this larger and more diverse group of lamps. That is, the simplification
of an “average” lamp is not nearly as valid here, weakening the fit.

4.2.3 Cycle Time

Figures 12 through 15 show the fits for 15 minute, 30 minute fixed and variable, and 45 minute
cycles. As with the ENERGY STAR lamps in Figure 11, these estimates compare predictions for
an “average” lamp that covers all the different types of lamps in the sample to the actual results
for all the different types of lamps in the sample, so the estimates would not be expected to fit as
well as for the narrower categories.

Nonetheless, the predictions fit reasonably well and match the overall shape reasonably well. While
the predictions for the 15 and 30 minute lamps tend to over-predict survival, the 45 minute lamps
are under-predicted.
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Figure 11:

Figure 12:
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Figure 13:

Figure 14:
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Figure 15:

4.3 Full Sample Model Predictions

The previous subsection presented estimates of the survival function for “average” lamps of various
categories and compared to the actual lamps in those categories. This subsection considers the
fit of the full sample. As discussed previously, the challenge is determining what percentile to
predict for each lamp. An additional challenge is calculating confidence intervals. Because of these
challenges, I present two results for the full sample.

First, the predicted distribution of the median. That is, for each lamp, I estimated the pre-
dicted median life of the lamp and used that as an estimate of the survival function. This is in
fact, not quite the same as the survival function, though, as it aggregates the distribution for each
lamp at the very beginning, and so misses the full distribution, especially any effects from long
tails. As such, it will over-estimate the survival function for low values, as it treats lamps that are
more likely to be from the low percentiles of the distribution as median lamps, and under-estimate
the tail of the distribution, treating high percentile lamps again as medians. The results are shown
in Figure 16. The expected features for the early and late failing lamps are clear, but the predicted
median function tracks the empirical survival function remarkably well from about 55% to about
20%. The confidence intervals for the predicted values are point-wise confidence bounds for the
median drawn from the bootstrap results. That is, they represent the median lamp life at each
percentile for the 5th and 95th percentile distributions of possible lamp lives from the bootstrap.

Perhaps the most striking feature of this analysis is the fit at the median. The estimated me-
dian of the median distribution is 4920 hours, just 89 hours off from the true sample median of
5009 hours. That is an error of 1.7%.
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Figure 16:
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The second analysis is an estimate of the full survival function of the sample. This was con-
structed by calculating the predicted value for each lamp for each percentile of its distributions.
That is, it represents a estimate of the survival function of the sample. The major drawback is that
bootstrap confidence bounds are not practical to calculate for this due to the number of computa-
tions required. Instead, I rely on the invalid, but easily calculable asymptotic confidence bounds.
These are meant only to give a rough sense of the relative uncertainty of the estimates and are
almost certain to underestimate the true confidence bounds. Results are shown in Figure 17. The
fit is almost exact beyond the 35 percent surviving, and somewhat conservative before that. The
Kaplan-Meyer survival function estimate does appear to be within the pointwise 90% confidence
bounds approximately 90% of the time and would almost certainly be with the appropriate (but
unavailable) bootstrap confidence bounds. The fit at the median of the distribution is not quite as
tight as the previous estimate. The estimate of 4550 underestimates the true value, but the true
value is well within the understated confidence bounds.

5 Model Predictions

This final analytical section presents the model predictions for the lamps offered by SCE through
its upstream lighting program in 2010-2012. That is, unlike the previous section that matched
model predictions to lamps that were actually observed in the sample, the results of this section
are predictions out of the sample to lamps that were promoted through the SCE portfolio, but not
directly represented in the laboratory study. The estimates are all based on the model developed
and analyzed in the previous sections, cycling times from the KEMA (2005)12, and lamp charac-
teristics are based on data from SCE for the population of lamps supported through the upstream
lighting program. Two types of predictions are reported. First, predictions for all lamps by room
type; second, predictions by lamp type based on the average cycling time.

Although more recent lighting studies have measured lighting usage in California, none of the
more recent studies have produced estimates of average cycle times that are reliable. As the model
is based on treating the cycling times used in the laboratory study as categorical variables, it isn’t
possible to directly estimate lamp life for intermediate cycling times. Instead, I have used a linear
interpolation between the nearest study cycling times. All values are weighted values, using the
number of lamps of each type in the population in the weighting. As before, the confidence bounds
are based on the bootstrap. The median is the value of interest and the mean is presented only
for reference.

In general, estimates are larger for these predictions than for the values from the laboratory
study because the sample for the study was quite different from the program lamp population.
Specifically, there was a shift away from standard lamps into specialty lamps, which tend to have
a longer life.

The columns labeled “Mean Median” in Tables 4 and 5 provide the weighted mean estimate of

12”CFL Metering Study”. Kema-Xenergy. February 2, 2005. Available at:
http://calmac.org/publications/2005 Res CFL Metering Study Final Report.pdf
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Figure 17:
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the median life of each lamp. The columns labeled “Median Mean” provide the weighted median
value of the mean life of the lamp. In this case, “Mean Median” is the more appropriate measure
as the program supported a very large number of lamps (over 2.5 million), but a relatively small
number of distinct lamp models (48).

5.1 Lamp Life by Room

Results in this subsection are for all lamps in various rooms based on the average cycle time
for that room. That is, it is not an estimate specifically for the types of lamps that tend to be
used in any given room, but for the program population, using the cycling time associated with a
specific room. An improved estimate could be made if the distribution of lamp types by room were
available, but unfortunately I did not have access to data that would provide that distribution.
The results are shown in Table 4.

Table 4: Lamp Life by Room

Room Ave. Cycle Mean Median Lower Mean Median Median Upper
Time Bound Median Mean Bound

All Lamps 32 9, 241 5, 201 7, 273 7, 640 12, 529
Bedroom 29 9, 290 5, 820 7, 311 7, 629 9, 600
Bathroom 11 9, 598 4, 472 7, 553 4, 319 16, 280

Family Room 51 10, 794 5, 806 8, 495 11, 018 17, 124
Garage 41 9, 053 5, 647 7, 125 7, 363 9, 400
Hallway 27 8, 816 5, 476 6, 938 7, 097 9, 199
Kitchen 38 8, 384 4, 467 6, 598 7, 440 14, 234

Living Room 68 19, 984 11, 549 15, 728 20, 964 23, 512
Laundry Room 16 6, 210 3, 684 4, 887 4, 610 6, 904

Other 26 8, 579 5, 307 6, 752 6, 831 8, 996

Results based on room cycle times from KEMA (2005)
Values based on all lamps, not room-specific
90% Confidence Interval Based on Bootstrap with 9,999 Replications

5.2 Lamp Life by Lamp Type

A more meaningful breakdown is the lamp life by lamp type. For each of the estimates, the predic-
tions are based on the average cycling time for all lamps from KEMA (2005).13 Again, that means
the estimate is not based on any differential usage between lamp types. There is quite a marked
difference between basic spiral lamps and specialty lamps. While this is true for each category
of specialty lamps, it is particularly true for high-wattage lamps, i.e. those with wattage greater
than 30 watts. Thus, the lamp selection of the program compared to the lamp selection for the
study sample has driven the increase in the median life. As discussed previously, the estimates for

13Ibid.
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Table 5: Lamp Life by Lamp Category

Lamp Category Mean Median Lower Mean Median Median Mean Median Upper
Bound Bound

All 9, 241 5, 201 7, 273 7, 640 12, 529
Basic Spiral 5, 142 3, 417 4, 047 4, 891 5, 155
All Specialty 9, 555 5, 337 7, 520 7, 802 13, 093

Specialty Shape 8, 005 4, 715 6, 300 6, 774 10, 490
Specialty Controls 5, 609 3, 365 4, 414 5, 568 6, 060

High Wattage 11, 653 6, 192 9, 171 12, 586 16, 630

Results based on overall average cycle time of 32 minutes from KEMA (2005)
90% Confidence Interval Based on Bootstrap with 9,999 Replications

specialty controls may overstate the improvement compared to standard lamps.

6 Conclusion

The goal of this study was to estimate the technical life of CFLs based on data from a laboratory
study. Numerous challenges presented themselves: the highly nonlinear response of CFL life to
various characteristics, especially cycling time; how to project out of sample when the sample was
designed for statistical power rather than as a representative sample; how to use the study results
efficiently for predicting out of the sample when a key characteristic (robustness to cycling) is not
directly observable; how to deal with significant variation in lamp life between lamps with the
same characteristics and usage profiles; how to estimate confidence intervals; and how to deal with
estimation of medians, among others.

These questions and challenges were addressed through the means of a two-step survival anal-
ysis and Wild bootstrapping. The process allowed me to use highly useful cycling data to form a
better model while still making predictions about non-study lamps. It allowed me to maintain the
powerful experimental design characteristics while estimating valid confidence intervals. It allowed
me to reflect information effectively about both the lamps that failed in the study and the ones
that did not fail. And it facilitated easy estimation of median values.

My recommended values for estimates of technical lamp life from the SCE program are the values
found in the “Mean Median” column. They represent the expected value of the median lamp life,
which is the closest estimate to the desired value of the true median of the population. A direct
estimate of the median of the full distribution would, while technically possible, be practically
unfeasible due to the computational intensity of the process.
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7 Recommendations

Recommendations from this research are as follows:

• SCE should adopt the “mean median” lamp hours for the lamp types from Table 5, repro-
duced as Table 6, as planning estimates for lamp EULs.

• SCE should use the model results to estimate lamp lives for the program populations for
newer populations, and use those values for planning purposes.

• The Energy Division should undertake an updated lighting metering study to gather newer
data on average cycle times and hours of use, and how they correlate with lamp conditions.

Table 6: Recommended Lamp Life by Lamp Category

Lamp Category Recommended EUL

Basic Spiral 4, 047
Specialty Shape 6, 300
Specialty Controls 4, 414
High Wattage 9, 171

Results reproduced from Table 5
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A Appendix

No formal comments or questions were received regarding this study following the public presenta-
tion on April 7, 2015. However, a substantive concern was raised during the presentation regarding
the influence of lamp wattage on predicted lamp life. The concern was that there were a small
number of high wattage lamp models in the study in comparison to the prevalence of high wattage
lamps in the program population considered. This Appendix addresses that concern and assess
the robustness of the model with regard to wattage. First, I will clarify the concern, and then I
will present three robustness checks.

The specific concern presented was that there was only one high wattage lamp model in the sam-
ple and the results for the high wattage lamps were due to that one lamp model. There are two
important clarifications to make. The sample actually contained three lamp models with wattage
greater than or equal to 30 watts, as well another at 29 watts, two at 27 watts and six at 26 watts.
That is, there were three lamp models in the high wattage category, as well as nine others with
wattages near the high wattage range.

Additionally, the idea that the projected life of lamps in the high wattage category is determined
only by the sample for the high wattage category is mistaken. The effect of wattage estimated by
the model is due to the gradient of lamp survival time across the full range of lamp wattage while
controlling for other lamp characteristics. Said another way, the effect of wattage on lamp life in
the model is determined by differences between the survival times of lamps across all values of the
wattage. A model that was built on cell averages would have this problem, but the purpose of this
study was specifically to avoid that problem. That being said, the external validity of the model
does rely on having sufficient variation in lamp characteristics in the sample.

A first robustness check is to include higher order terms (squares and cubes) for wattage in the
model. While the base model used in this study includes a quadratic term in the cycling model,
it is only first order in the survival time model. Adding higher order terms reduces the clarity of
interpretation of effects, but it controls those effects more flexibly, allowing for more complicated
patterns of influence and approximating other types of non-linearities.

To investigate this effect, I introduced second- and third-order terms in the survival time model
and a third-order term in the cycling model. While this did reduce the point estimates of the pre-
dicted lamp lives, a Wald test of the hypothesis that the higher-wattage model was different from
the base model used in the study was highly insignificant (with p-values above 0.99). Although
higher-order terms do provide additional explanatory power, the overall model is not significantly
different and runs the risk of over-fitting the sample.

A second robustness check is to evaluate a “placebo” model of the effect. The fundamental con-
cern is that, although there may be an important impact of increased wattage over some ranges
of values, this effect does not apply throughout the entire range of wattages, notably the upper
end. If this is the case, then replacing a lamp in the upper end of the wattage range with a lamp
that is identical except for a higher wattage, would have no effect on the survival outcome. But,
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it would attenuate the effect of wattage in the model.

To test this effect, I compared the outcome in the base model to a model in which wattage of
all lamps with wattage greater than 25 was increased by five. A t-test of the difference in the
wattage coefficients was insignificant, and a Wald test of the equality of the overall models was
highly insignificant.

A third and final test is to implement a weighted model in which the weights of the lamps in the
sample are scaled to be in proportion to the lamps in the population. This will put more emphasis
on specialty lamps in the sample, at the expense of basic spiral lamps that are much less prevalent
in the program population considered, with the goal of having the model reflect the population
more directly.

A test of the equality of these models was significant, but the weighted model actually increased
the predicted lamp life for lamps in the population. For this reason, and because the model is less
general, I don’t recommend using these results, favoring instead the results presented in the main
body of the study.
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